
1	

	

	

	

	

	

	

	
	

ADAS	Hardware	Tool	Check	
3/24/16	

	
	

1

Year 3: Progress Report 3

April 10th, 2014

ii	

Table	of	Contents	
A	-	ACTIVITY	1:	VEHICLE	IDENTIFICATION	..	1	

A.1	-	Program	Description	..	1	
A.2	-	Image	Processing	Tweaks	..	2	
A.3	-	Detection	...	2	
A.4	-	Prediction	...	2	
A.5	-	Output	Video	Results	...	3	

B	-	ACTIVITY	2:	SIGN	IDENTIFICATION	..	5	
B.1	-	Program	Description	..	5	
B.2	-	Object	Detection	..	5	
B.3	-	Color	Based	Detection	...	6	
B.4	-	Competition	Provided	Video	Results	..	6	
B.5	-	Team	Provided	Video	Results	..	7	

C	-	ACTIVITY	3:	S32V	INTERFACE	DEMONSTRATION	..	9	
C.1	-	Workspace	...	9	
C.2	-	Research	..	9	
C.3	-	Implementation	...	9	
C.4	-	Issues	..	11	

	
	

List	of	Figures	
Figure	1	Block	diagram	of	activity	1	code	...	1	
Figure	2	Vehicle	successfully	detected	(green)	and	another	(red)	which	is	not	of	interest	..	3	
Figure	3	Following	distance	per	frame	..	4	
Figure	4	Detection	using	the	C	based	code	..	4	
Figure	5	Block	diagram		of	activity	2	code	..	5	
Figure	6		Java	image	scraper	to	populate	training	database	..	6	
Figure	8		Competition	provided	video	output	frame	..	7	
Figure	9		Shows	false	positives	of	color	detector	...	8	
Figure	10	Stop	sign	detection	using	only	the	cascade	detector	...	8	
Figure	11	Workspace	includes	a	Linux	Workstation,	NXP	S32V	Board,	and	Macbook	Pro	..	9	
Figure	12	Block	diagram	of	activity	3	..	10	

1	

A	- Activity	1:	Vehicle	Identification	

A.1	- Program	Description	
The	vehicle	identification	code,	car_detect.m	identifies	nearby	vehicles	and	tracks	the	vehicle	directly	in	front.	The	
code	can	be	broken	down	into	five	main	parts	as	identified	in	Figure	1	below.	The	IO	stage	simply	processes	frames	in	
order	and	reads	and	writes	to	the	file	system.	The	stereo	stage	takes	the	stereo	frames	and	generates	a	point	cloud	such	
that	a	depth	(in	meters)	is	assigned	to	each	pixel.	The	stereo	code	is	very	similar	to	the	provided	Matlab	example,	and	
the	input	video	is	also	from	the	Mathworks	examples.	Though	it	would	have	been	ideal	to	use	other	video	sources,	there	
were	 initial	 issues	working	with	 other	 stereo	 videos.	 Despite	 the	 low	 FPS	 and	 jumps	 in	 the	Mathworks	 video,	 it	 still	
provides	a	 good	demonstration	of	our	 code.	Note	 that	 the	stereoParams.mat	 file	 is	used	 to	 calibrate	 the	 stereo	
cameras	and	 the	thresholdPC.m	 applies	 threshold	bounds	 to	 the	point	 cloud.	The	 tweaks	 section	 is	 comprised	of	

image	 processing	 techniques	 aimed	 to	 increase	 the	 likelihood	 of	 a	 correct	 vehicle	 detection.	 In	 the	 detect	 blocks,	 a	
trained	 cascade	 object	 detector	 is	 used	 to	 identify	 possible	 vehicles	 by	 returning	 the	 coordinates	 for	 one	 or	 many	
bounding	boxes.	The	detection	algorithm	relies	on	a	pre-trained	detector.	Although	custom	detectors	were	tested,	the	
final	 submission	uses	 the	Mathworks	provided	CarDetector.xml.	 The	detection	 stage	also	 attempts	 to	 score	 the	

bounding	boxes	so	that	if	multiple	vehicles	are	detected	in	a	single	frame,	the	one	that	is	most	likely	to	be	the	vehicle	of	
interest	is	colored	green	(high	score)	and	all	others	are	red.	Finally,	as	a	fallback,	if	detection	fails,	the	Prediction	code	
attempts	 to	 predict	 the	 location	 and	 distance	 of	 the	 vehicle	 in	 front	 using	 a	 weighted	 sum	 and	 simple	 parameter	
thresholds.	The	prediction	code	is	represented	with	a	cyan	box	annotation	and	is	only	executed	if	the	detector	fails	(30%	
of	the	frames).	

	

FIGURE	1	BLOCK	DIAGRAM	OF	ACTIVITY	1	CODE	
	

2	

	

A.2	- Image	Processing	Tweaks	
In	order	to	improve	detection	of	vehicles	located	directly	ahead	of	the	camera,	a	region	of	interest	(ROI)	is	implemented	
which	selects	a	portion	of	each	frame	to	analyze,	instead	of	the	entire	frame.	This	both	increases	processing	speed,	and	
improves	detection	accuracy.	The	user	can	toggle	an	option	to	specify	an	ROI	or	use	a	default	ROI.	If	the	user	toggles	the	
option	to	specify	an	ROI,	then	the	first	frame	of	the	video	appears	and	a	region	 is	defined	using	a	resizable	rectangle.	
Double-clicking	 confirms	 the	 selection	 and	 further	 processing	 will	 use	 that	 ROI	 specified	 by	 the	 user.	 An	 additional	
enhancement	to	improve	detection	is	increasing	the	brightness	of	the	ROI.	The	input	video	has	many	shadows	and	dark	
cars	that	are	not	 identified	by	the	detector.	After	converting	to	the	YCbCr	color	space,	the	brightness	 is	 increased	and	
converted	back	to	the	RGB	color	space	for	further	processing.	Adjusting	the	brightness	allowed	for	a	15%	increase	in	the	
vehicle	detection	stage.	In	production	code,	the	ROI	and	brightness	tweaks	could	be	dynamic	based	on	the	environment	
and	mounted	cameras.	

A.3	- Detection	
The	detection	stage	 is	 the	heart	of	 the	processing.	 It	 relies	on	the	cascade	object	detector	and	 its	ability	 to	recognize	
objects	after	being	trained	with	positive	and	negative	example	of	the	object	of	interest.	Mathworks	provided	a	detector	
that	seems	to	work	well,	but	is	somewhat	of	a	black	box,	since	it	is	unknown	how	many	images	were	used	to	train	the	
detector.	Additional	custom	detectors	were	made	as	an	attempt	to	outperform	the	Mathworks	one,	but	no	significant	
improvements	 were	 observed.	When	 the	 detector	 is	 executed	 on	 a	 frame,	 it	 returns	 the	 coordinates	 of	 boxes	 that	
bound	each	vehicle	that	has	been	identified.	Each	box	is	then	analyzed	and	given	a	score	that	represents	the	likelihood	
of	being	the	vehicle	of	interest.	This	score	is	based	on	the	height	to	width	ratio,	pixel	location	and	overlap	with	past	high	
scoring	 boxes.	 Since	 it	 is	 assumed	 vehicles	 don’t	move	 that	many	 pixels	 between	 frames,	 this	method	 is	 effective	 at	
detecting	and	tracking	vehicles,	however,	if	the	detector	doesn’t	return	any	boxes	(which	is	common),	none	of	this	code	
will	execute	and	the	frame	will	fail	to	annotate	the	frame	with	the	vehicle	location.	For	this	reason,	the	prediction	code	
was	added	with	the	hopes	of	drawing	a	box	on	every	frame.	

A.4	- Prediction	
In	order	to	improve	upon	the	cascade	object	detector,	predictive	techniques	were	implemented	to	account	for	the	case	
where	the	detector	 fails	 to	detect	a	car	 in	the	current	 frame.	 If	 there	has	been	sufficient	data	collected	on	previously	
tracked	vehicles	and	no	vehicle	was	detected	in	the	current	frame,	the	predictive	algorithm	is	executed.	The	prediction	
algorithm	uses	a	weighted	sum	of	user	specified	length	and	previously	collected	data	in	the	form	of	a	queue	to	compute	
a	predicted	bounding	box.	The	weights	are	set	up	such	that	newer	frames	have	a	higher	influence	on	predictions.	Since	
the	weight	vector	is	user	specified,	the	weights	can	be	optimized.	

! = #$%$&
$'(

#$&
$'(

	

Equation	1:	Weighted	sum	where	y	is	predicted	box,	w	is	non-normalized	weights,	and	x	is	previous	frame	data	

After	predicting	the	bounding	box	of	the	vehicle,	an	overlap	error	is	calculated	to	decide	whether	the	predicted	box	is	
sufficiently	 accurate.	 The	 region	 of	 overlap	 between	 the	 predicted	 and	 the	 most	 recent	 detected	 bounding	 box	 is	
computed	to	give	an	overlap	error.	This	value	is	then	normalized	to	give	an	overlap	error	ranging	from	0	to	1;	where	0	
implies	a	 good	prediction,	 and	1	 implies	a	bad	prediction.	 If	 the	overlap	error	 is	within	a	 specified	 threshold	and	 the	

3	

cascade	object	detector	fails	to	detect	a	vehicle	for	the	current	frame,	then	the	predicted	bounding	box	is	drawn	on	the	
current	 frame	 in	 the	color	blue.	 In	addition	to	 the	predicted	blue	bounding	box	being	displayed,	an	overall	prediction	
error	is	also	reported	in	white	as	a	percentage.	The	prediction	error	is	calculated	as	a	sum	of	the	overlap	error	and	the	
distance	 error,	 where	 distance	 error	 is	 the	 difference	 in	 distance	 between	 the	 predicted	 and	 most	 recent	 detected	
bounding	box.	The	average	overlap	prediction	error	is	0.17,	meaning	an	83%	overlap	exists	between	the	predicted	box	
and	previous	detections.	The	distance	error	comes	out	to	be	0.0271	m	which	equates	to	a	less	than	3	cm	deviation	in	the	
following	distance	prediction.	Though	the	complexity	of	this	algorithm	is	simple	compared	to	something	like	a	Kalman	
filter,	or	neural	network,	it	demonstrates	how	a	fallback	to	detection	can	be	used	to	increase	the	confidence	and	better	
achieve	the	goal	of	tracking	the	vehicle	in	front.	

A.5	- Output	Video	Results	
The	code	is	executed	by	running	the	car_detect.m	code.	The	video	player	will	open	and	play	the	frames	(slower	than	

real-time).	 On	 each	 frame,	 annotations	 are	 added	 depending	 on	 if	 the	 code	 detects	 or	 predicts	 a	 vehicle.	 For	 each	
successful	detection/prediction,	a	box	 is	drawn	with	a	 label	of	 the	syntax:	 ‘D:	X	m,	C:	AxB	px’	where	 ‘D’	 refers	 to	 the	
distance	 to	 the	 vehicle	 and	 ‘C’	 refers	 to	 the	 center	 point	 of	 the	bounding	box	 relative	 to	 the	 center,	where	 x	 center	
increases	from	right	to	left	and	y	increases	from	top	to	bottom.	Although	the	rub	If	the	text	‘Tracking…’	is	displayed	in	
the	lower	center,	the	detection	code	has	identified	a	high	scoring	vehicle	which	is	identified	with	a	green	box.	Red	boxes	
are	low	scoring	boxes	that	are	generally	a	vehicle,	but	not	the	one	of	interest.	If	detection	fails	and	prediction	succeeds,	
‘Predicting…’	will	be	displayed	in	the	lower	center	and	a	cyan	bounding	box	is	present.		

In	analyzing	the	results,	116	green	boxes	and	50	predicted	boxes	are	displayed	out	of	181	frames;	a	total	of	166	out	of	
181	well	exceeds	the	50%	detection	requirement.	A	sample	frame	is	shown	below	in	Figure	2.	

	

FIGURE	2	VEHICLE	SUCCESSFULLY	DETECTED	(GREEN)	AND	ANOTHER	(RED)	WHICH	IS	NOT	OF	INTEREST	
	

The	following	distance	to	the	green/cyan	boxes	is	plotted	below	in	Figure	3.	Upon	visual	inspection	and	comparison	to	
the	output	video,	this	seems	correct.	The	sharp	jumps	and	discontinuities	are	a	result	of	the	choppy	frame	rate	of	the	
input	video,	and	false	positive	detections.		

4	

	

FIGURE	3	FOLLOWING	DISTANCE	PER	FRAME	
	

Validation	code	compiled	from	C	was	also	used	to	help	validate	the	real-time	predication	Matlab	code.	The	validation	
code	is	much	more	accurate	at	identifying	and	tracking	vehicles	and	can	be	used	as	a	benchmark	model.	As	our	realtime	
code	 improves,	 it	 can	 continuously	 be	 compared	 and	 validated	 against	 this	 benchmark.	 Unfortunately,	 this	 code	 is	
anything	but	real-time	as	it	takes	about	5	seconds	per	frame	to	find	all	vehicles	(no	ROI	or	other	processing	is	used	to	
speed	up).	This	method	uses	Kalman	tracking	and	a	much	more	advanced	vehicle	detection	model	to	both	identify	and	
track	 vehicles.	 Each	 vehicle	 is	 given	 a	 uniquely	 colored	 rectangle	 box.	 Also,	 note	 that	 this	 code	 does	 not	 use	 stereo	
information.	It	is	purely	for	detecting	and	tracking.	The	code	can	be	given	upon	request	as	it	is	not	a	direct	requirement	
for	this	activity.	A	screenshot	is	shown	below	in	Figure	4.	

	

FIGURE	4	DETECTION	USING	THE	C	BASED	CODE	

	

5	

B	- Activity	2:	Sign	Identification	

B.1	- Program	Description	
The	goal	of	this	activity	is	to	identify	stop	signs	in	a	given	frame.	The	main	code	file	is	stopsign_detect.m	and	the	
helper	functions,	train_detector.m,	annotate_box.m,	and	extract_red_sign.m	are	also	referenced.	Two	
methods	are	presented	to	achieve	this	detection.	First,	the	cascade	object	detector	which	utilizes	a	detector,	trained	by	
our	team,	to	identify	stop	signs	in	various	lighting	and	angle.	If	stop	signs	are	identified,	the	bounding	box(s)	is	returned	
and	annotated	as	a	cyan	box	on	the	frame.	If	no	sign	is	detected,	the	experimental	color	based	detection	tries	to	find	a	
stop	sign	using	color	thresholding	and	blob	detection.	Similarly,	any	identified	stop	signs	are	represented	by	a	bounding	
box	 and	 annotated	 in	 green.	 Just	 as	 in	 Activity	 1,	 an	 ROI	 is	 used	 to	 improve	 detection	 and	 performance.	 The	 block	
diagram	process	is	shown	below	in	Figure	5.	

	

FIGURE	5	BLOCK	DIAGRAM		OF	ACTIVITY	2	CODE	

B.2	- Object	Detection	
The	code	for	object	detection	is	very	similar	to	Activity	1.	The	main	difference	is	that	it	relies	on	a	detector	generated	by	
the	UW	EcoCAR	team.	This	was	the	biggest	challenge	of	the	activity	since	the	goal	was	to	detect	the	sign	in	>	90%	of	the	
frames.	To	train	the	detector,	a	 large	database	of	positive	and	negative	samples	needed	to	be	obtained.	To	make	this	
process	easier,	a	simple	Java	program	was	developed	to	display	the	first	100	Google	image	search	results	for	a	certain	
query	like	‘stop	sign	photo’.	The	GUI,	shown	in	Error!	Reference	source	not	found.,	allows	one	to	easily	choose	whether	
or	not	to	put	that	result	into	the	database	as	either	a	positive	or	negative	example.	After	collecting	roughly	300	positive	
stop	sign	 images	and	about	1400	negative	 images	of	 roads	 that	did	not	contain	 stop	 signs,	 it	was	believed	 there	was	
enough	training	data	to	create	an	accurate	detector.	After	experimentation	and	tuning	in	the	train_detector.m,	it	
was	determined	that	using	10	stages	with	a	FAR	of	0.4	yielded	the	optimum	combination.	

Once	a	sign	is	 identified,	the	annotate_box.m function	is	called	to	draw	a	cyan	box	indicating	the	object	detector	
found	the	sign.	Despite	our	efforts	to	create	an	accurate	detector,	only	20%	detection	was	achieved	in	the	competition	

6	

provided	video.	This	could	be	a	failure	in	our	training	method,	limitation	in	the	Mathworks	detector	or	a	problem	with	
our	 code.	Rather	 than	continuing	 the	 tedious	work	of	building	a	 training	database,	a	 color	based	detection	algorithm	
was	added	as	an	experimental	fallback.	

	

FIGURE	6		JAVA	IMAGE	SCRAPER	TO	POPULATE	TRAINING	DATABASE	

B.3	- Color	Based	Detection	
To	achieve	>	90%	detection,	the	stop	sign	needed	to	be	identified	even	when	the	sign	is	represented	as	just	a	few	pixels.	
To	do	so,	we	took	advantage	of	the	stop	sign’s	unique	red	color	and	applied	color	threshholding	in	the	HSV	color	space	
to	create	a	binary	mask	such	that	red	pixels	are	1	and	everything	else	is	0.	This	essentially	creates	white	blobs	in	regions	
with	red	color.	This	type	of	thresholding	often	yields	small	specs	of	white	pixels	scattered	across	the	mask.	Since	we	are	
interested	 in	 a	 group	 of	 pixels,	 the	 function	 bwareaopen(BW , 70)	 is	 applied	 to	 the	 binary	 mask,	 effectively	
removing	 white	 clusters	 smaller	 than	 70	 px,	 and	 leaving	 the	 larger	 blobs.	 Next,	 the	 morphological	 operation	
imclose(BW, strel('disk', 15))	 is	 applied	 to	 solidify	 the	 blobs	 by	 filling	 any	 holes	 smaller	 than	 15	 pixels	
with	white.	All	of	this	processing	takes	place	in	the	extract_red_sign.m function.	Following	this,	regionprops	
command	is	used,	which	will	create	a	set	of	bounding	boxes	for	each	blob.	Then,	each	box	 in	the	set	 is	analyzed,	and	
only	 boxes	 exhibiting	 a	 ratio	 close	 to	 a	 square	 are	 kept	 since	 a	 stopsign’s	 height	 and	 width	 are	 equal.	 Finally,	 the
annotate_box.m function	is	called	to	draw	a	green	box	indicating	that	the	color	detector	found	the	sign.		

B.4	- Competition	Provided	Video	Results	
Running	 the	 stopsign_detect.m	 code	 is	 similar	 to	 Activity	 1.	 As	 stated,	 there	 are	 two	 types	 of	 annotations,	

indicated	by	the	text	in	the	bottom	center	of	the	frame.	Each	box	is	labeled	‘Dim	AxB	px	Center:	CxD	px’	as	defined	by	
the	rules,	where	‘Dim’	is	the	box	dimension	and	‘Center’	is	the	coordinates	of	the	box	center,	where	x	center	increases	
from	right	to	left	and	y	increases	from	top	to	bottom.	With	the	color	detection	enabled,	the	code	identifies	229	boxes	in	
the	 368	 frames	which	 is	 fair	 given	 that	 the	 stop	 sign	 is	 the	 only	 present	 until	 about	 frame	 240.	 This	 95%	 (229/240)	
detection	rate	is	a	huge	improvement	to	our	20%	detection	only	using	the	cascade	object	detector.	An	example	of	the	
cascade	detector	finding	the	sign	is	shown	Figure	7	below.	

7	

	

FIGURE	7		COMPETITION	PROVIDED	VIDEO	OUTPUT	FRAME	
	

Unfortunately,	 the	experimental	 color	detection	only	works	when	 there	 is	not	a	 lot	of	 red	pixels	 in	 the	 frames.	 If	 for	
example,	 a	 red	 car	drove	by,	 it	would	 likely	detect	 the	 car	as	a	 stop	 sign	given	 the	width	 to	height	 ratio	 fits	 into	 the	
specified	bounds.	For	this	reason,	 it	was	disabled	for	the	team	video	submission.	With	further	tuning,	this	color	based	
method	could	prove	to	be	a	formidable	fallback,	but	as	of	now	it	should	be	considered	experimental	

	

B.5	- Team	Provided	Video	Results	
The	team	supplied	video	came	from	YouTube	(link)	and	was	downloaded	with	standard	quality.	Aside	from	disabling	the	
color	 based	 detector	 and	 tweaking	 the	 ROI,	 the	 code	 is	 equivalent	 to	 the	 competition	 provided	 submission.	 The	 ROI	
could	eventually	be	self-tuned	and	dynamic;	however,	it	is	fixed	for	now.	This	video	has	red	pixels	other	than	stop	signs,	
so	it	 is	easy	to	see	why	the	color	based	detection	is	not	as	reliable.	Common	false	positives	include	taillights,	red	cars,	
buildings	and	other	red	signs.	An	example	frame	is	shown	below	in	Figure	8.		

Improvements	to	color	based	detection	mainly	fall	under	the	tuning	category.	A	similar	prediction	algorithm	as	shown	in	
Activity	1	could	be	used	to	better	identify	stop	signs	based	on	previous	frames.	This	historical	data	could	also	be	used	to	
tune	 the	 height	 to	 width	 ratio	 and	 help	 reduce	 false	 positives.	 Additionally,	 signs	 are	 static	 and	 many	 of	 the	 false	
positives	are	attempts	to	track	moving	vehicles.	Filtering	could	be	added	to	prevent	detection	of	moving	objects.	Finally,	
optical	character	recognition	(OCR)	could	be	used	to	attempt	to	identify	the	characters	‘S	T	O	P’	in	a	detection.	If	none	of	
the	letters	are	seen,	the	detection	could	be	ignored.	This,	however,	would	greatly	impact	the	real-time	performance.	A	
validation	model,	 like	the	one	demonstrated	in	Activity	1,	could	be	used	to	provide	a	benchmark	for	detection.	Such	a	
model	could	meticulously	scan	each	frame	for	stop	signs	and	output	box	coordinates.	Then	when	the	real-time	model	is	
tested,	the	outputted	boxes	could	be	spatially	compared	to	the	benchmark	results	and	converted	to	an	error	parameter	
that	can	be	used	for	iteratively	tuning	the	model.	

8	

	

FIGURE	8		SHOWS	FALSE	POSITIVES	OF	COLOR	DETECTOR	
	

The	cascade	object	detector	did	manage	to	find	all	of	 the	stop	signs	aside	from	one	that	was	almost	parallel	with	the	
road.	An	example	 frame	 is	 shown	 in	Figure	9.	The	main	 issue	 is	 that	 it	usually	doesn’t	detect	 the	 sign	until	 the	car	 is	
within	 10	 meters	 away.	 To	 improve	 this,	 the	 detector	 could	 be	 trained	 with	 smaller	 images	 of	 stops	 signs.	
Transformations	and	rotations	could	also	be	applied	to	the	training	set	to	help	identify	signs	at	different	angles.	A	more	
advanced	 classifier	model	 could	 also	 be	 used	 to	 dramatically	 improve	 performance.	 A	 recurrent	 neural	 network,	 for	
example,	 could	 autonomously	 train	 and	 tune	 a	 complex	 network	 for	 classifying	 stop	 signs	 as	 well	 as	 other	 signs.	 In	
summary,	more	training	data	and	a	more	complex	detection	scheme	could	greatly	improve	results.	

	

FIGURE	9	STOP	SIGN	DETECTION	USING	ONLY	THE	CASCADE	DETECTOR	
	 	

9	

C	- Activity	3:	S32V	Interface	Demonstration	

C.1	- Workspace	

	
FIGURE	10	WORKSPACE	INCLUDES	A	LINUX	WORKSTATION,	NXP	S32V	BOARD,	AND	MACBOOK	PRO	

	

The	workspace,	shown	 in	Figure	10	above,	 includes	the	NXP	S32V	vision	board	equipped	with	OpenCV	and	the	Vision	
SDK	 9.1.	 The	 included	 Sony	 camera	 was	 mounted	 to	 slot	 B,	 a	 Linux	 workstation	 is	 utilized	 for	 building	 code	 and	 a	
MacBook	was	used	for	playing	the	YouTube	input	video	(link).	In	order	to	communicate	between	the	remote	board	and	
host	Linux	machine,	an	SSH	server	was	set	up	on	the	board.	To	set	up	SSH,	the	/etc/networks/interfaces	file	
was	edited	to	include	the	static	IP	address,	netmask,	and	gateway.	With	this	workspace	setup,	files	on	the	board	could	
be	edited	 remotely	using	ssh,	 and	code	could	be	compiled	and	 transferred	 to	 the	board	 from	the	workstation	using	
scp.	The	MacBook	was	used	to	display	real-time	videos	in	order	emulate	what	a	car	may	be	exposed	to	on	the	road.		

C.2	- 	Research	
To	develop	this	submission,	the	Vision	SDK	environment	and	toolchain	were	studied.	The	demo	isp_csi_dcu.cpp	
source	 code	 was	 useful	 in	 figuring	 out	 how	 the	 camera	 collects	 frames	 and	 processes	 information.	 The	
face_detection.cpp	 code	was	 helpful	 for	 understanding	 how	 to	 integrate	OpenCV	 libraries	 into	 the	 codebase.	
After	 becoming	 comfortable	 with	 the	 supplied	 demos,	 the	 submission	 code	 was	 started.	 The	 main	 code	 is	 called		
isp_framerate.cpp	and	 is	heavily	based	off	of	the	isp_csi_dcu.cpp	demo.	There	were	two	main	objectives	
for	the	source	code;	first,	calculate	frame	rate	and	then,	print	text	to	each	frame.	

C.3	- Implementation	
To	calculate	the	frames	per	second	(FPS)	elapsed	time,	 	for	a	single	frame	was	stored.	The	FPS	was	then	calculated	
as.		

Equation	2:	FPS	Calculation

For	debugging	purposes,	the	FPS	calculation	was	printed	to	the	console.	The	next	step	was	to	print	this	information	on	
each	frame	before	outputting	to	the	display.	To	alter	the	frames,	the	optimized	OpenCV	libraries	were	employed.	It	was	
confirmed	that	the	necessary	OpenCV	library	paths	were	linked	correctly,	then	the	next	step	was	to	display	text	on	the	
screen.		

10	

	
FIGURE	11	BLOCK	DIAGRAM	OF	ACTIVITY	3	

	
The	 line:	 	Mat frame = Mat(720, 1280, CV_8UC3, lpFrame)	 allows	 the	 conversion	 to	 OpenCV’s	 class	
cv::Mat	 from	a void * lpFrame,	 (a	 pointer	 returned	 from	OS	 Abstraction	 Library	 (OAL)	memory	 allocation	
function).	 The	 cv::Mat	 frame	 is	 used	 to	 draw	 text	 on	 the	 frame	 using	 cv::putText	 function,	 which	 provides	
parameters	such	as	font	face,	font	scale,	color,	thickness,	etc.	Once	the	text	was	successfully	displayed	on	the	bottom	
left	of	the	screen,	it	needed	to	be	rotated	to	correct	orientation	since	the	text	was	shown	upside	down	relative	to	the	
camera	 frames.	 This	 issue	 stems	 from	 the	 fact	 that	 the	built-in	display	was	 installed	upside	down.	 Though	 it	 is	 not	 a	
requirement	of	this	activity,	the	issue	was	investigated	to	make	the	display	easier	to	read.	There	are	two	stages	where	
the	frame	rotation	can	be	adjusted;	pre	and	post	rotation.		
	
Pre-rotation	is	directly	handled	by	the	Sony	camera	by	configuring	camera	geometry.	The	code	below	flips	the	display	
such	that	the	frame	is	shown	upside	down	without	any	additional	post-rotation.	

 SONY_Geometry_t lGeo;
 SONY_GeometryGet(CSI_IDX_0, &lGeo);
 lGeo.mVerFlip = 1; // flip about y-axis
 lGeo.mHorFlip = 1; // flip about x-axis
 SONY_GeometrySet(CSI_IDX_0,&lGeo);

Post-rotation	is	handled	from	the	frame	after	 it's	been	represented	as	a	cv::Mat	data	structure,	which	supports	the	
cv::flip	 function	 to	 rotate.	 Note	 that	 a	 flip	 operation	 about	 a	 single	 axis	 is	 not	 equivalent	 to	 rotation.	 The	 flip	
operation	should	be	about	both	the	x	and	y-axis	to	be	equivalent	to	rotating	180	degrees.	The	following	code	performs	
180	degree	rotation	if	ORIENTATION is	set	to	1.	

 if (ORIENTATION) {
 flip(frame, frame, -1);
 }

The	third	argument	to	the	flip	operation	is	the	orientation	code.	-1	yields	a	flip	about	x	and	y-axis.		
	
The	results	of	this	rotation	are	not	trivial.	The	FPS	is	about	3x	faster	when	ORIENTATION == 0	and	the	cv::flip	
function	 is	omitted,	 therefore	 final	 submission	 initializes	ORIENTATION == 0.	The	video	submission	of	 the	display	
output	rotated	using	editing	software	so	that	it	is	clearer	to	the	viewer.	

11	

C.4	- Issues	
Workspace	issues	mostly	came	down	to	misunderstanding	the	Vision	SDK	capabilities	and	workflow.	There	were	initial	
problems	getting	networking	on	the	board	and	additional	 issues	building	the	demos.	After	improved	understanding	of	
the	 toolchain	 and	 directory	 structure,	 the	 necessary	 file	 system	 tweaks	 were	 applied	 and	 the	 demos	 were	 finally	
functional.	 It	was	also	discovered	that	the	make	clean	operation	sometimes	deleted	headers	that	are	needed	to	build	
the	code.	This	was	fixed	by	editing	the	make	file.	
	
In	 the	 implementation,	 there	 was	 trouble	 using	 the	 OpenCV	 namespace,	 but	 the	 solutions	 came	 down	 to	 properly	
linking	 the	 libraries	when	building	 the	program.	Additionally,	 understanding	how	 to	 convert	 lpFrames	 to	 a	cv::Mat	
was	a	struggle,	however,	looking	at	other	demo	code	helped	resolve	this.	Lastly,	the	rotation	issue	as	discussed	above.		
	

