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Abstract 
Convolutional neural networks have become the foundation for state of the 
art object detection and tracking tasks but often require a high-performance 
GPU to achieve near real-time results. Furthermore, many tasks require more 
than simply identifying and tracking an object and would benefit from the 
additional context that can be inferred from features in the image. We present 
a convolutional neural network trained to identify various smartphone 
models, as well as damaged phones, in order to estimate a dollar value for 
the phone. This network is optimized for low power, mobile usage and 
achieves near real-time predictions of live camera frames 

 

1  Introduction  
 
1 .1  Co ntr ibut io n s  

Most recent advances in object detection and tracking utilize a convolutional neural network 
(CNN) to extract and learn features from pre-labeled images while training so that when 
presented with unseen images, can best choose a label from memory based on the features 
present. The feature extraction in a CNN is inspired by the human brain's visual cortex which 
breaks images into features such as edges, shapes, and corners, which then activates certain 
knowledge and memories that tie attributes such as name, quality, cost, size to the objects 
present in the image [1]. Most CNN research focuses on mapping objects in an image to a 
single attribute, often a name or label for the object. In this paper, we explore a method to 
obtain additional context about detected objects, specifically a quality attribute that can then 
be used to estimate the cost of the object. 

An additional purpose of this paper is to demonstrate a CNN optimized for mobile use. We briefly 
show how a high-performance CNN model can be compressed and optimized for iOS use on a 
continuous stream of images with near real-time predictions. Many of the impressive applications 
enabled by CNNs are only useful if they can be executed on low power, portable hardware such as 
smartphones. 

A final contribution lies in the methods designed and used to create a large dataset from existing 
images found in popular search engines. 

While the topics discussed in this paper can be applied to any object with commercial value, 
smartphone identification task was chosen for the following reasons: 

1. Different smartphone models often have unique features that distinguish it from other 
models, such as the camera placement, speaker cutout, or logo.  

2. Most people have smartphones, so they have adequate familiarity to recognize 
differences between various models, as well as the usefulness of this technology.  

3. There is a large market for smartphones which means there are several images on the 
internet, making it easy to build a comprehensive image database of various phone 
models. 
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1 .2  Rela ted  Wo rk  

Although research focused on using computers to simulate brain functions has existed since the 
1950's, an early working example of a CNN was published in 1998 by Yann LeCun, known as 
LeNet-5 which classified written digits [2]. Since then, GPU's have come into play allowing CNNs 
to execute faster and with more layers of complexity.  In 2012, CNNs came back into the spotlight 
with a publication that discussed the first 'deep' CNN, titled AlexNet, which shattered prior records 
in the ImageNet Large-Scale Visual Recognition Challenge [3]. This prompted Microsoft, Google, 
and Facebook, to name a few to continually improve the capabilities of CNNs every year. 

While there doesn't appear to be any prior work on identifying phone models or estimating phone 
value, there are several examples involving the use of CNNs for object detection. These applications 
range from medical to astrophysics to autonomous driving. 

This paper is based on Google's Inception model [4] which came out in 2015 and introduced several 
new ideas to the standard and most popular CNN architecture demonstrated in AlexNet. Google's 
Tensorflow framework [5] is used to implement the Inception architecture, as well as to train and 
execute it on both a workstation and mobile phone.  More details on this are presented in the Phone 
Classifier section. 

Others have created a dataset from internet images, but few have documented the process. The 
majority of prior research is about unsupervised techniques [6]. There is no mention of utilizing 
pretrained CNNs for dataset sorting (see Dataset Filtering section). 

 
2  Dataset  
 
A dataset of labeled phone models is crucial for creating a robust classifier. Since no datasets exist, 
one had to be built from scratch. The automated dataset construction can be broken into three steps, 
image aggregation, filtering, and clustering. 
 
2 .1  Ag g rega t io n  

As mentioned, smartphones were selected for this project due to the availability of images on the 
internet. Many people upload images of their smartphone when they attempt to sell them, and 
manufacturers often post several stock images online to introduce new models or upgrades. Image 
databases such as Google Images or Bing cluster these images so they can be queried using search 
keywords. The automated filing done be these services is taken advantage of to build a local dataset 
of phone images indexed by their make and model.  

For this project, an image scraper built in Node.js used existing libraries for querying [7] and 
downloading [8] images from popular image provider services (Google, Yahoo, Bing, and Baidu). 
Phone makes and models can be queried along with additional keywords such as 'for sale', 'new' or 
'broken' and a field for how many images to retrieve. Using this tool and a list of keywords and 
models to query, a large dataset of over 30 thousand images was created. Unfortunately, this step 
relied on the search engine's ability to correctly index images and subsequently images of ads or 
accessories for the phone were frequently downloaded as false positives, or the images were 
duplicates or corrupted. Further filtering is necessary to ensure all images contain a phone. 
 
2 .2  Fi l t er ing  

A filtering program was developed to fine tune the image dataset to omit corrupt, similar/duplicate 
images and images that don't contain a phone. For detecting corrupt images, the MIME type [9] was 
extracted from each image and checked to ensure the data in the file was indeed an image. In 
addition, all images were converted to .jpg. Any file that was not considered an image was removed.  

Next, the OpenCV Scale-invariant feature transform (SIFT) implantation [10] was used to find 
highly similar or duplicate images. It was often the case that various sizes of the same image were 
scattered throughout the dataset, this step removed copies that were similar enough.  

Finally, to identify images not actually containing a phone, a CNN [11] pretrained to identify 
common objects such as TV's, people and phones [11] was utilized. This CNN extracts and labels a 



bounding box for any object it recognizes. If an image didn't contain a 'cell phone', it is flagged for 
removal, after this step over 5 thousand images were identified as false positives and removed. 

 
2 .3  Cluster ing  

With most false positives removed, the images could be clustered into different labels. For this 
application, the specific labels were initially decided to be the model of the phone such as iPhone 
5s; however, it was later determined that further grouping was necessary as phone models such as 
iPhone 5, 5s and 5s Plus did not have adequate distinguishing features to differentiate them. As a 
result, labels were subjectively clustered together based on physical similarity. An additional 'broken 
phone' label was added to help the CNN identify qualities independent of the make and model that 
indicate loss of quality, such as shattered screen or dented corners. Finally, all labels were named 
with the following formula {"Phone make" + "model"}, such as "iPhone" + "5s" or "Samsung" + 
"Galaxy S6" so the make and model could be easily extracted from the label. Eleven different phone 
makes, comprised of 40 unique models, were declared as a result of clustering. See Figures 1a and 
1b for the make and model distributions. 

  

 

 
Figures 1a and 1b: Show the image count distribution for phone makes and models respectively  

 

Ideally, the histograms are roughly uniform indicated an equal number of images for each label, but 



due to the clustering explained above and the availability of images, the labels are more imbalanced. 
It was found in the training phase that this didn't cause the CNN to have an unfair bias toward the 
more popular labels. In addition, the above distribution generally represents the popularity of the 
phone model in America. 

 
3  Phone Classif ier  
The Inception model (v3), powered by Tensorflow [4], was used as the CNN architecture for 
identifying phone models. Rather than retraining the several layers of inception which can take 
weeks, transfer learning was used to retrain the final layer of the model, the fully connected layer, 
which is responsible for turning the extracted features into a prediction. More information on 
transfer learning can be found in the original paper [13]. While it was not as good as training all 
layers from scratch, it performed surprisingly well and only took an hour rather than several days 
allowing for extra time to be spent on optimizing the training process. See Figure 2 below for a 
diagram outlining the transfer learning process. 

 
Figures 2: Outlines the transfer learning process 

 

The input images were passed through several cached Inception layers that were pretrained to extract 
features such as edges, corners, and other relationships. The final extracted features were 
represented by a single fully connected vector of length 1024. This was then compressed into the 
softmax vector which had a length equal to the number of labels (40). Each entry of this vector was 
a confidence or likelihood number between 0 and 1, which corresponds to the certainty of that entry 
being the final prediction. The entry with the highest confidence was the networks top guess for the 
predicted label. Note all confidences were normalized to sum to one. 

 
3 .1  Tra in ing  

A training routine was written to load the pretrained inception weights and retrain the last layer with 
the custom phone dataset. Random brightness and flipping was applied to the training images to 
expand the size of the dataset and train the model to be robust to different lighting and rotations of 
the phones. The dataset was randomly split into a train and test set.  During training, the train and 
validation accuracy were reported periodically, and the final test accuracy was evaluated after 
training concludes. The final hyperparameters and learning curve is showed below in Figure 3. 
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Hyperparameters: 
 
Epochs: 80,000 
Learning Rate: 0.01 
Batch size: 100 
Train/Val/Test Split: 
80/10/10 
Random brightness 
Random flipping 

 

Figure 3: Training parameters and learning curve 

 

The network was trained to minimize the cross-entropy loss. After 30 thousand epochs, the 
validation flattens indicating learning is slowing down. As more epochs were completed, the 
validation curve approached a horizontal asymptote and was no longer able to learn anything 
new from the dataset. For this reason, only 80 thousand epochs were completed in training.  

 
3 .2  Ev a lua t io n  

The network's accuracy was evaluated in two ways. First, the model prediction accuracy was 
measured as the percentage of images in which the phone model was correctly identified. It was 
found that the correct make of the phone was accurately predicted; however, the model of the phone 
was periodically incorrect in some cases; for example, an iPhone 6 being predicted as an iPhone 7. 
Even though this was an error, the inaccuracy was not as significant as incorrectly predicting an 
iPhone 6 as a Samsung S6. This observation, which can be seen visually in the confusion matrix in 
Figure 4a, led to a second evaluation metric, the phone make accuracy. The make accuracy is simply 
how often the extracted make of the final prediction is correct. Both evaluation metrics, along with 
the final training and validation accuracies are displayed in Table 1 below.  

 

Training Validation Test (Make) Test (Model) 

75% 51% 73% 54% 

Table 1: Evaluation results 

In addition to evaluating the prediction accuracy, the softmax layer’s confidence entries were also 
analyzed. Ideally, there was a single phone model with much higher confidence than the others, but 
it is often the case that the predicted model has confidence less than 0.4, which given that there are 
40 models, is still often dominant. The box plots in Figure 4b below compare the confidence in the 
top choice for both the make and model attribute. As expected, the make confidence is generally 
much higher.  



 

 
Figure 4a: Confusion matrix indicating the phone model accuracy 

of the test set. The gray clumps near the diagonals highlight the 
correct make but incorrect model predictions. 

 
 

Figure 4b: Box plots showing the confidence 
distribution of the two evaluation metrics 

 

 
4  Cost Estimation  
Up to this point, the network can take an input image and predict the phone make and model, which 
as mentioned in the introduction, is not entirely groundbreaking or useful. One of the added  
contributions of this paper is to introduce further context that can be inferred from the image, in this 
case, the estimated value or cost of a given phone.  

Cost is calculated as a weighted sum of the market price of each phone, weighted by the 
confidence outputted by the network's softmax layer. Next, a discount is applied based on the 
confidence level of the ‘broken phone’ label. This way phones with a greater degree of wear 
and tear or broken screens are devalued. The equation below summarizes this calculation. 

 
For example, if the network outputs 0.5, 0.3, 0.10 and 0.06 
(as depicted in Figure 2 above) for four phone models that 
cost of $120, $180, $130, and $210 respectively, and the 
broken label has a confidence of 0.04 or discount of 4%. 
The equation to the right shows how the final output cost is 
calculated. 

The market price is based on live database listings [14] which assign a cost value based on recent 
new or used sales of a given item. These costs are stored in a local database for each phone model 
and are shown in Figure 5 below. 



 
Figure 5: Distribution of phone cost for each model 

 
5  iOS App  
Using select tools provided in the Tensorflow framework, a simple iOS demo app was built to 
demonstrate the trained CNN and cost algorithm in a real-time scenario. 

 
5 .1  Opt i miza t io ns  

Another contribution of this paper is to demonstrate a working, useful CNN on low-powered, 
portable hardware. To do this, the CNN first needed to be optimized for iOS execution. A script 
with three steps was written to achieve this:  

1. The input of the CNN was changed from a jpg image to a raw iOS camera buffer. This way 
consecutive image frames could be piped through the network without needing conversion 
to jpg. 

2. The CNN's floating point weights were quantized to have less precision, which ultimately 
makes the computations faster and the cached weights occupy less space.  

3. The model file was mapped to iOS memory so it loaded on demand.  

With these optimizations, the model loaded and ran much faster at the cost of slightly lower accuracy 
due to the quantized weights. 
 
5 .2  User  Inter fa ce  

When the app is open, camera frames are instantly and sequentially evaluated by the network. 
Softmax entries with a confidence above 5% are displayed in descending order. The estimated 
cost output is also displayed above the predictions. In order to smooth the output displayed, a 
running sum parameterized by an update and decay value is used. This gives the app a very 
crude form of memory which allows it to converge to a prediction as more frames are 
processed. If no phone is seen (the confidences are all below 0.05), a message is displayed in 
place of the predictions and cost. 

A circle button to pause the app and take a snapshot is also included so the user can save the 
prediction in the form of a screenshot. There is also a camera swap button that toggles between the 
front and back camera for input. Screenshots of predictions for several different phones are shown 
in Figure 6 below. Note that the confidence is generally higher for the backside of the phones since 
there are unique features on the backside of phones (most screens on the front look similar for all 
phone models). Also, note that the top right phone in Figure 6 has a broken screen which is correctly 



identified and valued at a much lower rate. 

 

 
Figure 6: Prediction screenshots from iOS app 

 
6  Future Work  
To conclude, this paper highlighted three contributions, each of which has plenty of room for 
improvement:  

1. The steps to automate dataset construction using images from popular search engines,  
2. The use of a CNN to estimate multiple attributes from an image, in this case, phone 

make, model and estimated cost.  
3. How a CNN can be optimized for real-time execution on a low powered portable 

device.  

In the dataset creation steps, search query tricks can be used to increase the likelihood of 
capturing realistic images of phones rather than renderings or ads. In addition, unsupervised 
clustering can be used to isolate images that don’t look like phones. Finally, using Craigslist 
or eBay to obtain both images and a sale price would allow the network to better understand 
features that devalue a given phone model.  

In the training phase, a custom CNN architecture could be built and trained from scratch 
specifically for phones, rather than using transfer learning. Also, more distortion techniques 
such as random cropping or scaling can be used to help the model generalize and train faster.  
A custom cost function could replace the cross-entropy metric so predictions that are the 
correct make, but the wrong model are not penalized as much. 



There are several improvements that could benefit the iOS app. The smoothing of the displayed 
predictions has a lot of room for improvement. For example, a Long short-term memory 
(LSTM) [15] could be used to handle the predictions for the incoming sequences of frames . 
This would add memory cells so the predictions displayed can be a learned function of the 
previous frames, rather than a linear combination. Rather than displaying an endless stream of 
predictions, the app could stop predicting once the change in prediction values converges. This 
way the app would stop ‘thinking’ once it is has reached a high enough level of certainty. 
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