
Smartphone Identification and Cost Detection

Jake Garrison
6/3/2016

Department of Electrical Engineering
University of Washington

omonoid@uw.edu

Abstract
Convolutional neural networks have become the foundation for state of the
art object detection and tracking tasks but often require a high-performance
GPU to achieve near real-time results. Furthermore, many tasks require more
than simply identifying and tracking an object and would benefit from the
additional context that can be inferred from features in the image. We present
a convolutional neural network trained to identify various smartphone
models, as well as damaged phones, in order to estimate a dollar value for
the phone. This network is optimized for low power, mobile usage and
achieves near real-time predictions of live camera frames

1 Introduction

1 .1 Co ntr ibut io n s

Most recent advances in object detection and tracking utilize a convolutional neural network
(CNN) to extract and learn features from pre-labeled images while training so that when
presented with unseen images, can best choose a label from memory based on the features
present. The feature extraction in a CNN is inspired by the human brain's visual cortex which
breaks images into features such as edges, shapes, and corners, which then activates certain
knowledge and memories that tie attributes such as name, quality, cost, size to the objects
present in the image [1]. Most CNN research focuses on mapping objects in an image to a
single attribute, often a name or label for the object. In this paper, we explore a method to
obtain additional context about detected objects, specifically a quality attribute that can then
be used to estimate the cost of the object.

An additional purpose of this paper is to demonstrate a CNN optimized for mobile use. We briefly
show how a high-performance CNN model can be compressed and optimized for iOS use on a
continuous stream of images with near real-time predictions. Many of the impressive applications
enabled by CNNs are only useful if they can be executed on low power, portable hardware such as
smartphones.

A final contribution lies in the methods designed and used to create a large dataset from existing
images found in popular search engines.

While the topics discussed in this paper can be applied to any object with commercial value,
smartphone identification task was chosen for the following reasons:

1. Different smartphone models often have unique features that distinguish it from other
models, such as the camera placement, speaker cutout, or logo.

2. Most people have smartphones, so they have adequate familiarity to recognize
differences between various models, as well as the usefulness of this technology.

3. There is a large market for smartphones which means there are several images on the
internet, making it easy to build a comprehensive image database of various phone
models.

mailto:omonoid@uw.edu

1 .2 Rela ted Wo rk

Although research focused on using computers to simulate brain functions has existed since the
1950's, an early working example of a CNN was published in 1998 by Yann LeCun, known as
LeNet-5 which classified written digits [2]. Since then, GPU's have come into play allowing CNNs
to execute faster and with more layers of complexity. In 2012, CNNs came back into the spotlight
with a publication that discussed the first 'deep' CNN, titled AlexNet, which shattered prior records
in the ImageNet Large-Scale Visual Recognition Challenge [3]. This prompted Microsoft, Google,
and Facebook, to name a few to continually improve the capabilities of CNNs every year.

While there doesn't appear to be any prior work on identifying phone models or estimating phone
value, there are several examples involving the use of CNNs for object detection. These applications
range from medical to astrophysics to autonomous driving.

This paper is based on Google's Inception model [4] which came out in 2015 and introduced several
new ideas to the standard and most popular CNN architecture demonstrated in AlexNet. Google's
Tensorflow framework [5] is used to implement the Inception architecture, as well as to train and
execute it on both a workstation and mobile phone. More details on this are presented in the Phone
Classifier section.

Others have created a dataset from internet images, but few have documented the process. The
majority of prior research is about unsupervised techniques [6]. There is no mention of utilizing
pretrained CNNs for dataset sorting (see Dataset Filtering section).

2 Dataset

A dataset of labeled phone models is crucial for creating a robust classifier. Since no datasets exist,
one had to be built from scratch. The automated dataset construction can be broken into three steps,
image aggregation, filtering, and clustering.

2 .1 Ag g rega t io n

As mentioned, smartphones were selected for this project due to the availability of images on the
internet. Many people upload images of their smartphone when they attempt to sell them, and
manufacturers often post several stock images online to introduce new models or upgrades. Image
databases such as Google Images or Bing cluster these images so they can be queried using search
keywords. The automated filing done be these services is taken advantage of to build a local dataset
of phone images indexed by their make and model.

For this project, an image scraper built in Node.js used existing libraries for querying [7] and
downloading [8] images from popular image provider services (Google, Yahoo, Bing, and Baidu).
Phone makes and models can be queried along with additional keywords such as 'for sale', 'new' or
'broken' and a field for how many images to retrieve. Using this tool and a list of keywords and
models to query, a large dataset of over 30 thousand images was created. Unfortunately, this step
relied on the search engine's ability to correctly index images and subsequently images of ads or
accessories for the phone were frequently downloaded as false positives, or the images were
duplicates or corrupted. Further filtering is necessary to ensure all images contain a phone.

2 .2 Fi l t er ing

A filtering program was developed to fine tune the image dataset to omit corrupt, similar/duplicate
images and images that don't contain a phone. For detecting corrupt images, the MIME type [9] was
extracted from each image and checked to ensure the data in the file was indeed an image. In
addition, all images were converted to .jpg. Any file that was not considered an image was removed.

Next, the OpenCV Scale-invariant feature transform (SIFT) implantation [10] was used to find
highly similar or duplicate images. It was often the case that various sizes of the same image were
scattered throughout the dataset, this step removed copies that were similar enough.

Finally, to identify images not actually containing a phone, a CNN [11] pretrained to identify
common objects such as TV's, people and phones [11] was utilized. This CNN extracts and labels a

bounding box for any object it recognizes. If an image didn't contain a 'cell phone', it is flagged for
removal, after this step over 5 thousand images were identified as false positives and removed.

2 .3 Cluster ing

With most false positives removed, the images could be clustered into different labels. For this
application, the specific labels were initially decided to be the model of the phone such as iPhone
5s; however, it was later determined that further grouping was necessary as phone models such as
iPhone 5, 5s and 5s Plus did not have adequate distinguishing features to differentiate them. As a
result, labels were subjectively clustered together based on physical similarity. An additional 'broken
phone' label was added to help the CNN identify qualities independent of the make and model that
indicate loss of quality, such as shattered screen or dented corners. Finally, all labels were named
with the following formula {"Phone make" + "model"}, such as "iPhone" + "5s" or "Samsung" +
"Galaxy S6" so the make and model could be easily extracted from the label. Eleven different phone
makes, comprised of 40 unique models, were declared as a result of clustering. See Figures 1a and
1b for the make and model distributions.

Figures 1a and 1b: Show the image count distribution for phone makes and models respectively

Ideally, the histograms are roughly uniform indicated an equal number of images for each label, but

due to the clustering explained above and the availability of images, the labels are more imbalanced.
It was found in the training phase that this didn't cause the CNN to have an unfair bias toward the
more popular labels. In addition, the above distribution generally represents the popularity of the
phone model in America.

3 Phone Classif ier
The Inception model (v3), powered by Tensorflow [4], was used as the CNN architecture for
identifying phone models. Rather than retraining the several layers of inception which can take
weeks, transfer learning was used to retrain the final layer of the model, the fully connected layer,
which is responsible for turning the extracted features into a prediction. More information on
transfer learning can be found in the original paper [13]. While it was not as good as training all
layers from scratch, it performed surprisingly well and only took an hour rather than several days
allowing for extra time to be spent on optimizing the training process. See Figure 2 below for a
diagram outlining the transfer learning process.

Figures 2: Outlines the transfer learning process

The input images were passed through several cached Inception layers that were pretrained to extract
features such as edges, corners, and other relationships. The final extracted features were
represented by a single fully connected vector of length 1024. This was then compressed into the
softmax vector which had a length equal to the number of labels (40). Each entry of this vector was
a confidence or likelihood number between 0 and 1, which corresponds to the certainty of that entry
being the final prediction. The entry with the highest confidence was the networks top guess for the
predicted label. Note all confidences were normalized to sum to one.

3 .1 Tra in ing

A training routine was written to load the pretrained inception weights and retrain the last layer with
the custom phone dataset. Random brightness and flipping was applied to the training images to
expand the size of the dataset and train the model to be robust to different lighting and rotations of
the phones. The dataset was randomly split into a train and test set. During training, the train and
validation accuracy were reported periodically, and the final test accuracy was evaluated after
training concludes. The final hyperparameters and learning curve is showed below in Figure 3.

Jake Garrison

Hyperparameters:

Epochs: 80,000
Learning Rate: 0.01
Batch size: 100
Train/Val/Test Split:
80/10/10
Random brightness
Random flipping

Figure 3: Training parameters and learning curve

The network was trained to minimize the cross-entropy loss. After 30 thousand epochs, the
validation flattens indicating learning is slowing down. As more epochs were completed, the
validation curve approached a horizontal asymptote and was no longer able to learn anything
new from the dataset. For this reason, only 80 thousand epochs were completed in training.

3 .2 Ev a lua t io n

The network's accuracy was evaluated in two ways. First, the model prediction accuracy was
measured as the percentage of images in which the phone model was correctly identified. It was
found that the correct make of the phone was accurately predicted; however, the model of the phone
was periodically incorrect in some cases; for example, an iPhone 6 being predicted as an iPhone 7.
Even though this was an error, the inaccuracy was not as significant as incorrectly predicting an
iPhone 6 as a Samsung S6. This observation, which can be seen visually in the confusion matrix in
Figure 4a, led to a second evaluation metric, the phone make accuracy. The make accuracy is simply
how often the extracted make of the final prediction is correct. Both evaluation metrics, along with
the final training and validation accuracies are displayed in Table 1 below.

Training Validation Test (Make) Test (Model)

75% 51% 73% 54%

Table 1: Evaluation results

In addition to evaluating the prediction accuracy, the softmax layer’s confidence entries were also
analyzed. Ideally, there was a single phone model with much higher confidence than the others, but
it is often the case that the predicted model has confidence less than 0.4, which given that there are
40 models, is still often dominant. The box plots in Figure 4b below compare the confidence in the
top choice for both the make and model attribute. As expected, the make confidence is generally
much higher.

Figure 4a: Confusion matrix indicating the phone model accuracy

of the test set. The gray clumps near the diagonals highlight the
correct make but incorrect model predictions.

Figure 4b: Box plots showing the confidence
distribution of the two evaluation metrics

4 Cost Estimation
Up to this point, the network can take an input image and predict the phone make and model, which
as mentioned in the introduction, is not entirely groundbreaking or useful. One of the added
contributions of this paper is to introduce further context that can be inferred from the image, in this
case, the estimated value or cost of a given phone.

Cost is calculated as a weighted sum of the market price of each phone, weighted by the
confidence outputted by the network's softmax layer. Next, a discount is applied based on the
confidence level of the ‘broken phone’ label. This way phones with a greater degree of wear
and tear or broken screens are devalued. The equation below summarizes this calculation.

For example, if the network outputs 0.5, 0.3, 0.10 and 0.06
(as depicted in Figure 2 above) for four phone models that
cost of $120, $180, $130, and $210 respectively, and the
broken label has a confidence of 0.04 or discount of 4%.
The equation to the right shows how the final output cost is
calculated.

The market price is based on live database listings [14] which assign a cost value based on recent
new or used sales of a given item. These costs are stored in a local database for each phone model
and are shown in Figure 5 below.

Figure 5: Distribution of phone cost for each model

5 iOS App
Using select tools provided in the Tensorflow framework, a simple iOS demo app was built to
demonstrate the trained CNN and cost algorithm in a real-time scenario.

5 .1 Opt i miza t io ns

Another contribution of this paper is to demonstrate a working, useful CNN on low-powered,
portable hardware. To do this, the CNN first needed to be optimized for iOS execution. A script
with three steps was written to achieve this:

1. The input of the CNN was changed from a jpg image to a raw iOS camera buffer. This way
consecutive image frames could be piped through the network without needing conversion
to jpg.

2. The CNN's floating point weights were quantized to have less precision, which ultimately
makes the computations faster and the cached weights occupy less space.

3. The model file was mapped to iOS memory so it loaded on demand.

With these optimizations, the model loaded and ran much faster at the cost of slightly lower accuracy
due to the quantized weights.

5 .2 User Inter fa ce

When the app is open, camera frames are instantly and sequentially evaluated by the network.
Softmax entries with a confidence above 5% are displayed in descending order. The estimated
cost output is also displayed above the predictions. In order to smooth the output displayed, a
running sum parameterized by an update and decay value is used. This gives the app a very
crude form of memory which allows it to converge to a prediction as more frames are
processed. If no phone is seen (the confidences are all below 0.05), a message is displayed in
place of the predictions and cost.

A circle button to pause the app and take a snapshot is also included so the user can save the
prediction in the form of a screenshot. There is also a camera swap button that toggles between the
front and back camera for input. Screenshots of predictions for several different phones are shown
in Figure 6 below. Note that the confidence is generally higher for the backside of the phones since
there are unique features on the backside of phones (most screens on the front look similar for all
phone models). Also, note that the top right phone in Figure 6 has a broken screen which is correctly

identified and valued at a much lower rate.

Figure 6: Prediction screenshots from iOS app

6 Future Work
To conclude, this paper highlighted three contributions, each of which has plenty of room for
improvement:

1. The steps to automate dataset construction using images from popular search engines,
2. The use of a CNN to estimate multiple attributes from an image, in this case, phone

make, model and estimated cost.
3. How a CNN can be optimized for real-time execution on a low powered portable

device.

In the dataset creation steps, search query tricks can be used to increase the likelihood of
capturing realistic images of phones rather than renderings or ads. In addition, unsupervised
clustering can be used to isolate images that don’t look like phones. Finally, using Craigslist
or eBay to obtain both images and a sale price would allow the network to better understand
features that devalue a given phone model.

In the training phase, a custom CNN architecture could be built and trained from scratch
specifically for phones, rather than using transfer learning. Also, more distortion techniques
such as random cropping or scaling can be used to help the model generalize and train faster.
A custom cost function could replace the cross-entropy metric so predictions that are the
correct make, but the wrong model are not penalized as much.

There are several improvements that could benefit the iOS app. The smoothing of the displayed
predictions has a lot of room for improvement. For example, a Long short-term memory
(LSTM) [15] could be used to handle the predictions for the incoming sequences of frames .
This would add memory cells so the predictions displayed can be a learned function of the
previous frames, rather than a linear combination. Rather than displaying an endless stream of
predictions, the app could stop predicting once the change in prediction values converges. This
way the app would stop ‘thinking’ once it is has reached a high enough level of certainty.

References

[1] "Convolutional Neural Networks (LeNet)." Convolutional Neural Networks (LeNet) —
DeepLearning 0.1 documentation. Accessed June 04, 2017.
http://deeplearning.net/tutorial/lenet.html.

[2] LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning
applied to document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.

[3] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." In Advances in neural information processing systems, pp. 1097-
1105. 2012.

[4] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions."
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9.
2015.

[5] Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado et al. "Tensorflow: Large-scale machine learning on heterogeneous distributed
systems." arXiv preprint arXiv:1603.04467 (2016).

[6] Rubinstein, Michael, Armand Joulin, Johannes Kopf, and Ce Liu. "Unsupervised joint object
discovery and segmentation in internet images." In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1939-1946. 2013.

[7] Pevers. "Images-scraper." Npm. Accessed June 04, 2017.
https://www.npmjs.com/package/images-scraper.

[8] Demsking. "Image-downloader." Npm. Accessed June 04, 2017.
https://www.npmjs.com/package/image-downloader.

[9] "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies." IETF Tools. Accessed June 04, 2017. https://tools.ietf.org/html/rfc2045.

[10] Lowe, Toy building set. U.S. Patent 6711293 B1 filed Mar 6, 2000, and issued Mar 23, 2004.

[11] Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C. Lawrence Zitnick. "Microsoft coco: Common objects in context."
In European Conference on Computer Vision, pp. 740-755. Springer International Publishing,
2014.

[12] Redmon, Joseph, et al. "You only look once: Unified, real-time object
detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016.

[13] Donahue, Jeff, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell. "DeCAF: A Deep Convolutional Activation Feature for Generic Visual
Recognition." In Icml, vol. 32, pp. 647-655. 2014.

[14] "What is the market price for..." Find out the market price for anything - The Price
Geek. Accessed June 04, 2017. http://www.thepricegeek.com/.

[15] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural
computation 9, no. 8 (1997): 1735-1780.

http://deeplearning.net/tutorial/lenet.html
https://www.npmjs.com/package/images-scraper
https://www.npmjs.com/package/image-downloader
https://tools.ietf.org/html/rfc2045
https://www.google.com/search?tbo=p&tbm=pts&hl=en&q=ininventor:%22David+G.+Lowe%22
http://www.thepricegeek.com/

