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Abstract 
Spirometry is a clinical sensing technique for identifying or monitoring 
pulmonary exacerbations in patients. The expense of the equipment and 
requirement for adequate training interferes with widespread adoption of 
spirometry, especially in developing regions where it is most needed. We 
present several methods for performing spirometry on a mobile phone using the 
internal microphone and evaluate the reliability of each method. 

 

1 Introduction 
We first present the motivation, related work and dataset, then go into detail on the two categories 
of methods used for mobile phone spirometry, classical machine learning and deep learning. We 
conclude with a comparison of the results followed by ideas for future work. 
1.1 Motivation 
Lung disease contributes to roughly 10% of deaths in the world and approximately $50 billion in 
US healthcare costs annually [3, 7]. Spirometry [2] is the most widely employed objective 
measure of lung function and is central to the diagnosis and management of chronic lung diseases, 
such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Forced 
expiratory volume in one second (FEV1) is the volume exhaled in the first second which has great 
importance on diagnosing lung diseases or COPD. However, challenges currently facing 
spirometry include hardware cost, patient compliance and usability [5,6]. In this project we present 
SpiroSound, a smartphone-based approach that calculates FEV1 using the phone’s built-in 
microphone.  

1.2 Related Work 
Our work draws motivation from prior research exploring solutions that utilize sensing and 
computing capabilities of smartphones as well as technologies that leverage audible sensing for 
improvement in healthcare. Larson in SpiroSmart [1], which is prior research from our lab, relies 
on complicated algorithms that require a remote server for prediction, while our simple 
implementation runs locally and efficiently on the phone. In SpiroSound we use a subset of the 
dataset used in SpiroSmart, and suffer from similar accuracy issues and limitations.  

 

2 Dataset 

2.1 Data Collection 
Our dataset consists of two trials for each of the 500 patients where a trial contains a waveform 
recorded from the mobile phone, groundtruth data from a clinical spirometer, and other patient 
flags such as gender, smoker, ethnicity. The patient data comes from a mix of university students 
and various local VA hospital patients. The mobile data is collected on various android phones 
held approximately 15 cm from the patient's face. The patient takes a deep breath, then forcibly 
exhales until their lung is depleted. The breathing technique is exactly as described in the 
Spirometry Procedures Manual [4]. The groundtruth spirometry data is collected in the traditional 



clinical manner and rather than extracting the entire flow volume curve, we extract the FEV1 
which, according to pulmonologists, is the most useful result of a spirometry test. A healthy FEV1 
increases with height and weight, but generally is between 3 and 4. 

 

2.2 Preprocessing 
The raw waveforms from the mobile phone are preprocessed such that they are uniform in 
duration (10 seconds), resampled to 8kHz, and trimmed to start and end so that only the exhale 
audio data is captured. In order to best capture the sound of the airflow, the waveform is low pass 
filtered to eliminate sound above 400 Hz. While this may remove useful audio, it helps by 
removing speech and wheezing noises that are specific to a trial or patient. More advanced 
filtering could be used to better extract the airflow sound. Figure 1 below shows an example 
waveform and spectrogram after preprocessing. 

 

  

Figure 1: Filtered input waveform and spectrogram respectively 

 
2.3 Data Split 
Given our data comes from the general population, 
it is unsurprisingly biased towards healthy people as 
they are the majority. As a result, the machine 
learning technique is at risk for essentially guessing 
the mean FEV1 rather than generalizing to the full 
variance of the data. To remedy this, we truncated 
our dataset to be more uniform across our FEV1 
range. The results of truncation are shown in Figure 
2. This step greatly improved our model’s ability to 
generalize to all patients.  

The refined dataset is split into a test and train set such 
that 80 percent of the data is used for training. Of the 80 percent training data, 20 percent is set 
aside as our validation set. 

 

3 Machine Learning 
We tested various methods of feature extraction and classical machine learning techniques in order 
to regress to the true FEV1 from the audio input, optimizing for mean squared error (MSE). Each 
of the following methods used the scikit-learn library for implementation.  

3.1 Feature Extraction 
We use the absolute value of our recorded audio file, shown in Figure 3, as our palette for feature 
extraction. Since most of the information is in the initial one second, we divided the first second 
into eight equally distant portions and calculated the area underneath the waveform in each portion 
and subsequently treated each of the areas as a feature. This significantly down samples the input 

Figure 2: Histogram showing data  



data. We also included the decay feature which is the time when the sound decays to room noise 
level. Other extracted features included max amplitude and the area underneath the envelope. We 
coupled these features with patient info such as gender, ethnicity and if the patient was a smoker. 

 

 
Figure 3: Feature extraction from waveform envelope 

 
3.2 Models 
We evaluated five different machine learning approaches to regress to FEV1. These approaches 
were random forest, gradient boosting, SVM, ridge regression and KNN. We used grid search and 
three-fold cross validation to tune different hyper parameters in order to optimize for MSR.   

3.3 Results 
The results of the five approaches are summarized in Table 1. The random forest model had the 
least mean square error, while the ridge regression trained the fastest. For reference, a MSR of 0.7 
corresponds to an average percent error of around 30%. 

 

Model Mean Squared Error Train Time (seconds) 

Random Forest 0.631 19.88 

Gradient Boost 0.676 1.04 

SVM Linear 0.761 454.6 

Ridge Regression 0.798 0.212 

KNN 0.954 7.67 

Table 1: Regression results sorted by error 

 
3.3 Feature Importance 
In this section, we explore the importance of our input features for the different machine learning 
approaches. As shown in Figure 4, each model used the features differently, for example a feature 
might have a significant importance on one model and not have any effect on the other model. For 
example, in the random forest model gender is the most impactful parameter, whereas in SVM, 
asthma has the greatest significance. 

 



  

  
Figure 4: Feature importance for top machine learning methods 

 

4 Deep Learning 
We experimented with deep learning via Tensorflow with the hopes of achieving smaller error 
rates and obtaining new insights on feature extraction. Convolutional neural networks (ConvNet) 
were used so the trained filter layers could be analyzed for ideas on feature extraction. 

4.1 Input 
Unlike the approach used in the machine learning, our deep learning input was simply the 
preprocessed waveform. No patient information or extracted features were used. The input audio 
was in the form of a spectrogram image with dimensions 256 x 157 where the axis was frequency 
by time resolution. Refer back to Figure 1 for an input spectrogram example. 

4.2 Models 
Two different ConvNet architectures were explored, the first had three layers and the second had 
five. The three layered net was more compact, trains faster and seems to generalize better on 
unseen test data. Conversely, the five layer net was much deeper, contained many more hidden 
nodes and had a symmetrical max pooling size. The ConvNet architectures are shown in greater 
detail in Appendix A. 

Both architectures were trained with 50 epochs and a batch size of 32 (constrained by the available 
GPU memory of our Titan X). The ConvNets were setup to classify the correct FEV1 class from 
16 classes spanning from 1.25 to 5.5 in increments of 0.25. The output softmax layer was used to 
regress from the confidence associated with each bin to a single FEV1 value from which MSR can 
be evaluated. The biggest limitation to this approach is while training, the nets were optimizing for 
accuracy (identifying the correct FEV1 bin), but the metric we actually want to optimize for was 
MSE obtained through regression.  

4.3 Training 
Despite the obvious differences in the two ConvNet models, training results were somewhat 
model independent. Figure 5a reveals that the five layer model indeed achieved a higher training 
accuracy, but this did not translate to a better validation accuracy. The five layer model overfits to 
the train data and in 50 epochs nearly reaches a point of diminished learning from the data. Since 



the validation accuracy is continually climbing, it could be worth training for more epochs to 
when the validation accuracy finally settles, especially for the three layer net since it only reaches 
50% accuracy on the training data. 

 

  
Figure 5: Training accuracy and validation accuracy for both networks 

 
4.4 Results 
The results for the two classifiers are shown in Table 2, along with the softmax conversion to 
mean square error. When compared to Table 1, the deep learning methods fail to do as well as 
classical models; however, they are not directly comparable since the deep learning only used the 
raw audio as input. Furthermore, it is interesting to see that classification accuracy is not a good 
proxy for MSR in regression since models with higher accuracy do not necessarily have lower 
MSR. Overall it appears the three layer model is more effective in terms of MSR, less prone to 
overfitting, and faster to train. More analysis may reveal specific features in the spectrogram that 
aid the classification task. Such analysis would be useful for improving feature extraction in 
section 3.1. 
 

Model Classifier Accuracy Mean Squared Error Train Time (seconds) 

3 Layer 0.47 1.08 85 

5 Layer 0.52 1.11 146 

Table 2: ConvNet model results 

 

5 Conclusion  
Our results indicate we can regress from audio to FEV1 with a MSR of around 0.63 which 
corresponds to around 20% error on average. While this is not effective enough to be routinely 
used in a clinical setting, it is far better than guessing. Our model is clearly better at predicting 
FEV1 for healthy patients. While the intention of the deep learning was to discover new insights 
on feature extraction and ideally achieve lower error, the results ended up being less favorable. 
 
5.1 Model Comparison  
The Bland-Altman plots in Figure 6 indicate possible bias in the model. Ideally the scatter is 
clustered along the 0 horizontal line meaning there is no bias toward any particular FEV1 value. 
Our results suggest a clear bias towards the mean FEV1 (~3.5), especially in the Ridge regression 
model which has a clear linear trend. The random forest and three layer models appear to be the 
most generalized. Overall, random forest is our best model based on the low MSR and the Bland-
Altman plot. 
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Figure 6: Bland Altman plots for bias analysis 

 

6 Future Work 
This project serves as a checkpoint in a larger research problem. Since this problem has not been 
well explored in prior related work, our methods are very much experimental. Our findings 
indicate there is room for improvement and exploration in both feature engineering and deep 
learning architecture design. Coming up with better ways of extracting useful information from the 
sound will be key to the success of this technique. The ConvNet can be improved by altering it to 
optimize for MSE in regression, rather than classification accuracy. Additionally, different inputs 
such as the sound envelope or differently scaled spectrograms could prove effective, or other 
neural network architectures such as an RNN may learn better temporal features from the data. 
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8 Appendix 
 
A Neural network architectures 
 

  

 

ConvNet architecture diagrams for 3 and 5 layers 


