
Sound Classification 

 
 

Jake Garrison 
12/6/2016 

Department of Electrical Engineering 
University of Washington 
omonoid@uw.edu 

   

Abstract 

Classifying sound can be a difficult task even for a human. Environmental 
sound is even more challenging given the uncontrolled conditions and 
background noise. In this paper, several machine learning techniques are 
explored for deriving sound features and using them to train a sound 
classifier. This paper is primarily focused on techniques that characterize 
sound using the short time Fourier transform (STFT) representation which 
enables sound to be treated as a spectrogram image rather than time series 
data. Classifier models are trained using deep neural net, as well as more 
traditional machine learning approaches. 

 

1 Introduction 
 

 

1.1 Inspiration 

Deep neural networks (DNNs) have enabled many classification applications in the last few 
years. Convolutional Neural Networks (CNNs) coupled with high-performance GPUôs have 
been crucial for creating modern image classifiers that when trained on large datasets such as 
ImageNet, are capable of classifying hundreds of different objects with acceptable precision. 
Audio classification has also benefited from modern advancements, but not nearly to the level 
of image classification. Part of this is due to a lack of labeled audio data, and additionally, 
there seem to be less meaningful applications to audio classifiers outside of speech. I am 
personally interested in training and deploying audio classifiers for use in medical screening 
applications, music composition, and supplementing real time image classification tasks. 
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1.2  Use Cases 

Many respiratory illnesses can be screened using sound via smartphone or other portable low 
powered hardware. Coughs, for example, can be classified into óhealthyô or óunhealthyô based 
on the sound; with óunhealthyô coughs potentially further classified into infections such as 
pneumonia or tuberculosis (TB). Cough classifier hardware could then be deployed to endemic 
areas to help track the origin and spread of contagious infections like TB. Additionally, 
expensive medical hardware such as spirometers (used for measuring lung functionality) could 
be replaced with smartphones and enable daily screening for people with conditions such as 
asthma, or to help diagnose such conditions. Such technology could also be used to aid sleep 
studies for people suffering from disorders such as sleep apnea. 

Classifying sound in order to distinguish between different instruments, rhythms and genres 
could also be revolutionary for music composition, discovery, and sorting. The record industry 
could use classification technology for copyright claims and musicians could use it as a tool 
for composition and sound generation. 

Systems that traditionally rely on computer vision such as home surveillance and autonomous 
cars could be supplemented or replaced with audio classifiers which require much less 
processing power and storage space, and also can be used to easily triangulate the source of a 
sound event (with multiple microphones).  

 

1.2 Related Work 

Audio classification research has mostly fallen under the automatic speech recognition 
category, enabling systems such as Appleôs Siri or Amazonôs Alexa to respond to requests via 
speech. Most of this research is focused on segmenting speech into phonemes and then 
classifying words from there. Some speech research results such as Cepstral processing or the 
Mel-frequency scale can be used for broader audio classification problems and are used in this 
paper. There are examples of other classification problems, such as bird calls or musical 
instruments, but many of them are very specific to a particular domain. 

The Urban Sound Dataset [1] used in this paper, was created in 2014 and select manuscripts 
have since been published on the topic of urban sound classification. The authors of the dataset 
published a paper [2] on the topic of using DNNôs for classification, which inspired and set 
the baseline for the experiments in my paper. 

 

2 Dataset 

The Urban Sound dataset contains 8732 labeled sound excerpts less than 4 seconds each from 
10 classes: air conditioner, car horn, children playing, dog bark, drilling, engine idling, 
gunshot, jackhammer, siren, and street music. Note there were not many gunshot examples, so 
it was later removed. Since these recordings are collected from crowd-sourced data, the 
quality, volume and background noise varies significantly between samples, making this 
classification problem more difficult and realistic. The classes are drawn from the urban sound 
taxonomy described in the accompanying dataset article [1], which also includes a detailed 
description of the dataset and how it was compiled. The audio files are in WAV format, and 
the sampling rate, bit depth, and number of channels are the same as those of the original file 
uploaded to Freesound (and hence may vary from file to file).  

Example plots for each class are shown below (Figures 1 & 2). The wave plots show the 
signalôs amplitude versus time, and the spectrograms show how the magnitude of frequencies 
(y-axis) change over time (x-axis) where the magnitude scales from blue (low) to red (high). 
The spectrograms tend to provide more information about the sound since it includes 
frequency (pitch) content. 



 

 

Figure 1 and 2: Show the waveform and spectrograms for the 10 classes 

 

The plots above help to visualize the different attributes of the classes in the dataset, but further 
feature extraction is necessary in order to reduce the tens of thousands of data points for each 
audio clip into a smaller more reasonable set.  

 

3 Feature Extraction 

To reduce the points into different feature sets, various methods are utilized. The main idea is 
to compress and filter the data in some way such that the redundant information is removed, 
leaving only the most pertinent information necessary for classifying the sound. Following the 
feature extraction, each sound file can be represented with the same set of features, making 
them much easier and efficient to compare and classify. 

The Librosa library was used for feature extracting as it comes with several useful methods 
for representing audio in different ways. The methods used in this paper are outlined in the 
table below with links to more details. These methods are all related to the frequency content 
of the audio. Other methods not explored in this paper could be used to further derive features 
from the natural rhythm or repetition of sounds. This is less useful for this application since 
most of the classes are impulses or aperiodic by nature.  



Mel-frequency cepstral 
coefficients (MFCC) 

Coefficients usually used for speech recognition 

Chromagram of STFT 
Projects bins representing the 12 semitones (chroma) of the musical 
octave 

Mel-scaled power 
spectrogram 

Uses Mel scale to provide greater resolution for the more informative 
(lower) frequencies (based on human ear). 

Octave-based spectral 
contrast 

Focuses on musical octave patterns 

Tonnetz 
Estimates tonal centroids as coordinates in a six-dimensional interval 
space 

Table 1: Feature Extraction Methods 

 

Two separate feature sets were derived from the dataset. The first representation uses each of five 
methods outlined above and then concatenates, averages and flattens them to give a consistent 
feature vector of 193 values for every processed audio clip. These features can be thought of 
as an ensemble of all methods, averaged so the information can be represented with fewer data 
points. This feature set is referenced as the ómeanô set. 

The second set is a 128 x 128 representation of the Mel-scaled power spectrum that can be visualized 
as an image as shown below. This feature set is referenced as the óspecsô. Mel-scaled power 
spectrograms were used in place of regular spectrograms because they tend to be more sparse and 
represent the same information with less data. 

 

  

Figure 3: Mel-scaled power spectrogram 

Deriving both of these feature sets takes over an hour on a high-performance workstation, but 
only needs to be done once and then stored as a file for later access. 

 

4 Classifiers 

 

4.1 Classifier Overview 

There is a broad range of algorithms that fit under the category of multi-class classifiers. The 
Scikit-Learn library was used for a majority of them and the remaining DNN based models 
were implemented using Keras with a Tensorflow backend. The discussion of classifiers is 
delimited by the library for clarity. 
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4.2 Scikit-Learn 

The Scikit-Learn library makes it convenient to try several different classifiers without writing 
much code. Ten different classifiers were evaluated including: Logistic regression, SVM, K 
nearest neighbors, Decision trees, Random forests, AdaBoost, Naµve Bayes, Gradient 
Boosting, Linear discriminant analysis, and Quadratic classifier. See the Scikit-Learn 
documentation for information on these classifiers. 

Each of these classifiers was trained and evaluated on the ómeanô feature set and the óspecô set 
(flattened into a single vector). Note that not all classifiers were evaluated with the óspecô set 
due to training time constraints resulting from the high resolution of the óspecô set. 

 

4.3 Keras Deep Learning 

Keras enables complex deep learning models to be implemented and evaluated with a few 
lines of code. As a result, the majority of the work was spent on tuning and optimizing the 
networks rather than creating them from scratch. That being said, obtaining results from the 
Keras models took significantly more effort than those made with Scikit-Learn.  

Two model architectures were explored, each having two variants for a total of four DNNs. 
The simpler of the two architectures is the feed forward neural network (FNN), and the second 
is a convolutional neural network (CNN). In general, CNNôs are better for image input as it 
convolves a filter over the input extracting patterns in order to train weights. Details of the 
four variants of the two architectures are presented in the table below. All models used the 
Adam optimizer and used some form of dropout after each layer. The models used Softmax on 
the last layer, ReLu activation on preceding layers and were evaluated with a cross entropy 
loss function. 

 
 

FNN 1 
(3 layer) 

Input: Spec features flattened to length 16384 (128*128) 
Hidden layers: 3 each with 512 units 
Batch size: 128 
Learning Rate: 0.0005 
Training Epochs: 30 

FNN 2 
(3 layer) 

Input: Mean features length 193 
Hidden layers: 3 with 100, 200, 200 units respectively 
Batch size: 100 
Learning Rate: 0.0005 
Training Epochs: 30 

CNN 1 
(5 layer) 

Input: Spec features 128x128 
Convolutional layers: 3 with 24, 48, 48 filters respectively 
Filter Size: 3 
Max Pooling: 4x2 
Fully connected layers: 2 size 64, then 10 for output layer 
Batch size: 30 
Learning Rate: 0.001 
Training Epochs: 30 

CNN 2 
(8 layer) 

Input: Spec features 128x128 
Convolutional layers: 6 each with 32 filters each  
Filter Size: 5 
Max Pooling: 4x2 
Fully connected layers: 2 size 128, then 10 for output layer 
Batch size: 30 
Learning Rate: 0.0005 
Training Epochs: 20 

Table 2: Deep learning architectures 

 

 



5 Training and Tuning 
 

5.1 Training Split 

The dataset is comprised of 10 ófoldsô each containing around 800 samples. The data was split 
such that 80% of the data (8 folds) was for training and the rest for testing. This way after the 
models train, they can be evaluated on the remaining unseen data. The models were evaluated 
with three-fold cross validation to better represent the limited data and prevent overfitting. 
Unfortunately, there are less than 10 samples of gunshots, so the classifiers did not have 
adequate training examples to learn and classify a gunshot. 

 

 

5.2 Hyperparameter Tuning 

In order to get the most out of the classifiers, model tuning was necessary, especially for the 
DNNôs. For the first few experiments, parameters were manually tweaked in order to observe 
the effect on performance. Once the models were decent, further tuning was utilized. 

Many of the parameters listed in Table 2 were experimentally tuned using both grid search and 
random search. In grid search, an array of candidates for each parameter to be tuned is declared 
and each combination is evaluated using three-fold cross validation. With this method, tuning 
three hyperparameters with three candidates each will evaluate the model 3x3x3=27 times 
since for each combination, the model is evaluated three times due to cross-validation. This 
can be time-consuming, but can drastically improve the modelôs accuracy. Random search was 
used for some parameters as well since it has been proven to converge to optimal parameters 
quicker than grid search [4]. For the CNN, the accuracy increased by 15% after these 
techniques were employed. 

A select few of the Scikit-Learn classifiers were tuned beyond initial settings. The ones that 
showed most promise (gradient boosting, logistic regression LDA and SVM) were manually 
tweaked. For logistic and gradient boosting, grid search was used to parameterize the learning 
rate and the number of estimators. Note that random forests do not require tuning making it 
easy to employ. 

 

5.3 Training and Validation Loss 

The log entropy loss function was monitored while training the DNNôs and an early stop 
function was used to stop training once the validation loss started increasing. This helped tune 
the number of training epochs and also prevented overfitting. The noise in the loss plots is due 
to the batch size used in stochastic gradient descent.  

 

  



  

Figure 4: DNN Loss plots 

 

Ideally, the validation line tracks well with the training line and they both increase as epochs 
increase. CNN2 looks like it may have an overfitting problem since the loss function doesnôt 
track very well to the training line. While the FFN2 validation line seems to be well 
correlated with the training line, it stops after only 20 iterations, indicating it has stopped 
learning sooner than FFN1, which goes to nearly 40 epochs. This generally results in a worse 
model overall. This observation is also present when comparing CNN1 and CNN2. 

 

6 Results 
 

6.1 Classifier Performance 

The results are published in figures below. The results of each model are displayed as a 
confusion matrix with the model name and accuracy in the title. The confusion matrix helps 
indicate what classes the model struggled to identify. Note there are different amounts of each 
class, so a darker box doesnôt necessarily equate to better prediction. The missed predictions 
(elements not on diagonal) are the most insightful way to visualize the limitations of the 
model. As stated earlier, this dataset had very few gunshot examples and so it was removed as 
a class in the context of this paper. 

 

  



  

Figure 5: DNN results 

 

As expected, the CNNs outperformed the FFNs. Additionally, the CNNs are nearly identical 
in accuracy and confusion matrix.  

 

  

  



  

  

  

Figure 6: Scikit-Learn classifiers with mean feature set input 

 

The distinguishable diagonal on most of the confusion matrices indicates the models (aside 
from Naµve Bayes) did indeed learn to classify the sounds to some degree. Also, notice how 
some models performed better at detecting certain classes when compared to another model 
with similar overall accuracy.  

 



  

  

  

  



  

Figure 7: Scikit-Learn classifiers with specs feature set input 

 

It should be clear that the specs features were less informative to the models and following 
training, the classifier performance suffered. Some classifiers such as QDA, were almost as 
bad as randomly guessing. Note that gradient boosting is missing. Since the spectrograms are 
thousands of points, gradient boosting takes a very long time to train and for this reason, was 
never fully evaluated. 

 

Position Model Features Accuracy 
Training Time 
(seconds) 

1 CNN1 specs 0.77 111 

2 CNN2 specs 0.76 191 

3 Gradient Boosting means 0.65 82 

4 Random Forests means 0.62 5 

5 Logistic Regression means 0.59 511 

6 FFN1 means 0.58 12 

7 SVN means 0.55 14 

8 Random Forests specs 0.54 39 

Table 3: Top classifiers 

 

6.2 Discussion 

As expected, the CNNs performed best by a large margin and both had roughly the same 
results. CNN1, however has a more ideal loss plot (see section 5.3) and is less prone to 
overfitting as a result and also trains faster, making it a superior model. Gradient boosting and 
random forests, generally regarded as the best decision tree based classifiers, were next in the 
list. Also, note that random forests trained extremely fast relative to other classifiers. The 
FFN1 model was further down in the list, but also trained very fast. Finally, even the random 
forests classifier using the óspecsô features (originally made for the CNNs) outperformed many 
other classifiers that use the superior ómeansô features. 

6.3 Conclusion 

Given the noisiness in the data and the fact that there are ten classes to choose from, 0.77 
accuracy is quite impressive. The paper on DNNs [2] published by the authors of the dataset 
achieved 0.72 accuracy, indicating the CNNs used in this paper are improvements. There is, 
however, some variability in the accuracy results of CNN1 and CNN2, and averaging several 
versions of the same CNN may bring down the accuracy from 0.77. 

The CNN1 is the best classifier and it takes spectrograms which are relatively fast to compute 
on the fly for real-time classification. The downside is that it is slow to train and requires a 
high-end GPU compared to the FFN, gradient boosting and random forests which run fine on 
a CPU. The decision tree based methods, gradient boosting and random forests, also had 


