
Sound Classification

Jake Garrison
12/6/2016

Department of Electrical Engineering
University of Washington
omonoid@uw.edu

Abstract

Classifying sound can be a difficult task even for a human. Environmental
sound is even more challenging given the uncontrolled conditions and
background noise. In this paper, several machine learning techniques are
explored for deriving sound features and using them to train a sound
classifier. This paper is primarily focused on techniques that characterize
sound using the short time Fourier transform (STFT) representation which
enables sound to be treated as a spectrogram image rather than time series
data. Classifier models are trained using deep neural net, as well as more
traditional machine learning approaches.

1 Introduction

1.1 Inspiration

Deep neural networks (DNNs) have enabled many classification applications in the last few
years. Convolutional Neural Networks (CNNs) coupled with high-performance GPUôs have
been crucial for creating modern image classifiers that when trained on large datasets such as
ImageNet, are capable of classifying hundreds of different objects with acceptable precision.
Audio classification has also benefited from modern advancements, but not nearly to the level
of image classification. Part of this is due to a lack of labeled audio data, and additionally,
there seem to be less meaningful applications to audio classifiers outside of speech. I am
personally interested in training and deploying audio classifiers for use in medical screening
applications, music composition, and supplementing real time image classification tasks.

mailto:omonoid@uw.edu

1.2 Use Cases

Many respiratory illnesses can be screened using sound via smartphone or other portable low
powered hardware. Coughs, for example, can be classified into óhealthyô or óunhealthyô based
on the sound; with óunhealthyô coughs potentially further classified into infections such as
pneumonia or tuberculosis (TB). Cough classifier hardware could then be deployed to endemic
areas to help track the origin and spread of contagious infections like TB. Additionally,
expensive medical hardware such as spirometers (used for measuring lung functionality) could
be replaced with smartphones and enable daily screening for people with conditions such as
asthma, or to help diagnose such conditions. Such technology could also be used to aid sleep
studies for people suffering from disorders such as sleep apnea.

Classifying sound in order to distinguish between different instruments, rhythms and genres
could also be revolutionary for music composition, discovery, and sorting. The record industry
could use classification technology for copyright claims and musicians could use it as a tool
for composition and sound generation.

Systems that traditionally rely on computer vision such as home surveillance and autonomous
cars could be supplemented or replaced with audio classifiers which require much less
processing power and storage space, and also can be used to easily triangulate the source of a
sound event (with multiple microphones).

1.2 Related Work

Audio classification research has mostly fallen under the automatic speech recognition
category, enabling systems such as Appleôs Siri or Amazonôs Alexa to respond to requests via
speech. Most of this research is focused on segmenting speech into phonemes and then
classifying words from there. Some speech research results such as Cepstral processing or the
Mel-frequency scale can be used for broader audio classification problems and are used in this
paper. There are examples of other classification problems, such as bird calls or musical
instruments, but many of them are very specific to a particular domain.

The Urban Sound Dataset [1] used in this paper, was created in 2014 and select manuscripts
have since been published on the topic of urban sound classification. The authors of the dataset
published a paper [2] on the topic of using DNNôs for classification, which inspired and set
the baseline for the experiments in my paper.

2 Dataset

The Urban Sound dataset contains 8732 labeled sound excerpts less than 4 seconds each from
10 classes: air conditioner, car horn, children playing, dog bark, drilling, engine idling,
gunshot, jackhammer, siren, and street music. Note there were not many gunshot examples, so
it was later removed. Since these recordings are collected from crowd-sourced data, the
quality, volume and background noise varies significantly between samples, making this
classification problem more difficult and realistic. The classes are drawn from the urban sound
taxonomy described in the accompanying dataset article [1], which also includes a detailed
description of the dataset and how it was compiled. The audio files are in WAV format, and
the sampling rate, bit depth, and number of channels are the same as those of the original file
uploaded to Freesound (and hence may vary from file to file).

Example plots for each class are shown below (Figures 1 & 2). The wave plots show the
signalôs amplitude versus time, and the spectrograms show how the magnitude of frequencies
(y-axis) change over time (x-axis) where the magnitude scales from blue (low) to red (high).
The spectrograms tend to provide more information about the sound since it includes
frequency (pitch) content.

Figure 1 and 2: Show the waveform and spectrograms for the 10 classes

The plots above help to visualize the different attributes of the classes in the dataset, but further
feature extraction is necessary in order to reduce the tens of thousands of data points for each
audio clip into a smaller more reasonable set.

3 Feature Extraction

To reduce the points into different feature sets, various methods are utilized. The main idea is
to compress and filter the data in some way such that the redundant information is removed,
leaving only the most pertinent information necessary for classifying the sound. Following the
feature extraction, each sound file can be represented with the same set of features, making
them much easier and efficient to compare and classify.

The Librosa library was used for feature extracting as it comes with several useful methods
for representing audio in different ways. The methods used in this paper are outlined in the
table below with links to more details. These methods are all related to the frequency content
of the audio. Other methods not explored in this paper could be used to further derive features
from the natural rhythm or repetition of sounds. This is less useful for this application since
most of the classes are impulses or aperiodic by nature.

Mel-frequency cepstral
coefficients (MFCC)

Coefficients usually used for speech recognition

Chromagram of STFT
Projects bins representing the 12 semitones (chroma) of the musical
octave

Mel-scaled power
spectrogram

Uses Mel scale to provide greater resolution for the more informative
(lower) frequencies (based on human ear).

Octave-based spectral
contrast

Focuses on musical octave patterns

Tonnetz
Estimates tonal centroids as coordinates in a six-dimensional interval
space

Table 1: Feature Extraction Methods

Two separate feature sets were derived from the dataset. The first representation uses each of five
methods outlined above and then concatenates, averages and flattens them to give a consistent
feature vector of 193 values for every processed audio clip. These features can be thought of
as an ensemble of all methods, averaged so the information can be represented with fewer data
points. This feature set is referenced as the ómeanô set.

The second set is a 128 x 128 representation of the Mel-scaled power spectrum that can be visualized
as an image as shown below. This feature set is referenced as the óspecsô. Mel-scaled power
spectrograms were used in place of regular spectrograms because they tend to be more sparse and
represent the same information with less data.

Figure 3: Mel-scaled power spectrogram

Deriving both of these feature sets takes over an hour on a high-performance workstation, but
only needs to be done once and then stored as a file for later access.

4 Classifiers

4.1 Classifier Overview

There is a broad range of algorithms that fit under the category of multi-class classifiers. The
Scikit-Learn library was used for a majority of them and the remaining DNN based models
were implemented using Keras with a Tensorflow backend. The discussion of classifiers is
delimited by the library for clarity.

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/
https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Mel_scale
file:///C:/Users/garrisma/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/5CLBQKGZ/(http:/ieeexplore.ieee.org/document/1035731/
file:///C:/Users/garrisma/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/5CLBQKGZ/(http:/ieeexplore.ieee.org/document/1035731/
https://sites.google.com/site/tonalintervalspace/

4.2 Scikit-Learn

The Scikit-Learn library makes it convenient to try several different classifiers without writing
much code. Ten different classifiers were evaluated including: Logistic regression, SVM, K
nearest neighbors, Decision trees, Random forests, AdaBoost, Naµve Bayes, Gradient
Boosting, Linear discriminant analysis, and Quadratic classifier. See the Scikit-Learn
documentation for information on these classifiers.

Each of these classifiers was trained and evaluated on the ómeanô feature set and the óspecô set
(flattened into a single vector). Note that not all classifiers were evaluated with the óspecô set
due to training time constraints resulting from the high resolution of the óspecô set.

4.3 Keras Deep Learning

Keras enables complex deep learning models to be implemented and evaluated with a few
lines of code. As a result, the majority of the work was spent on tuning and optimizing the
networks rather than creating them from scratch. That being said, obtaining results from the
Keras models took significantly more effort than those made with Scikit-Learn.

Two model architectures were explored, each having two variants for a total of four DNNs.
The simpler of the two architectures is the feed forward neural network (FNN), and the second
is a convolutional neural network (CNN). In general, CNNôs are better for image input as it
convolves a filter over the input extracting patterns in order to train weights. Details of the
four variants of the two architectures are presented in the table below. All models used the
Adam optimizer and used some form of dropout after each layer. The models used Softmax on
the last layer, ReLu activation on preceding layers and were evaluated with a cross entropy
loss function.

FNN 1
(3 layer)

Input: Spec features flattened to length 16384 (128*128)
Hidden layers: 3 each with 512 units
Batch size: 128
Learning Rate: 0.0005
Training Epochs: 30

FNN 2
(3 layer)

Input: Mean features length 193
Hidden layers: 3 with 100, 200, 200 units respectively
Batch size: 100
Learning Rate: 0.0005
Training Epochs: 30

CNN 1
(5 layer)

Input: Spec features 128x128
Convolutional layers: 3 with 24, 48, 48 filters respectively
Filter Size: 3
Max Pooling: 4x2
Fully connected layers: 2 size 64, then 10 for output layer
Batch size: 30
Learning Rate: 0.001
Training Epochs: 30

CNN 2
(8 layer)

Input: Spec features 128x128
Convolutional layers: 6 each with 32 filters each
Filter Size: 5
Max Pooling: 4x2
Fully connected layers: 2 size 128, then 10 for output layer
Batch size: 30
Learning Rate: 0.0005
Training Epochs: 20

Table 2: Deep learning architectures

5 Training and Tuning

5.1 Training Split

The dataset is comprised of 10 ófoldsô each containing around 800 samples. The data was split
such that 80% of the data (8 folds) was for training and the rest for testing. This way after the
models train, they can be evaluated on the remaining unseen data. The models were evaluated
with three-fold cross validation to better represent the limited data and prevent overfitting.
Unfortunately, there are less than 10 samples of gunshots, so the classifiers did not have
adequate training examples to learn and classify a gunshot.

5.2 Hyperparameter Tuning

In order to get the most out of the classifiers, model tuning was necessary, especially for the
DNNôs. For the first few experiments, parameters were manually tweaked in order to observe
the effect on performance. Once the models were decent, further tuning was utilized.

Many of the parameters listed in Table 2 were experimentally tuned using both grid search and
random search. In grid search, an array of candidates for each parameter to be tuned is declared
and each combination is evaluated using three-fold cross validation. With this method, tuning
three hyperparameters with three candidates each will evaluate the model 3x3x3=27 times
since for each combination, the model is evaluated three times due to cross-validation. This
can be time-consuming, but can drastically improve the modelôs accuracy. Random search was
used for some parameters as well since it has been proven to converge to optimal parameters
quicker than grid search [4]. For the CNN, the accuracy increased by 15% after these
techniques were employed.

A select few of the Scikit-Learn classifiers were tuned beyond initial settings. The ones that
showed most promise (gradient boosting, logistic regression LDA and SVM) were manually
tweaked. For logistic and gradient boosting, grid search was used to parameterize the learning
rate and the number of estimators. Note that random forests do not require tuning making it
easy to employ.

5.3 Training and Validation Loss

The log entropy loss function was monitored while training the DNNôs and an early stop
function was used to stop training once the validation loss started increasing. This helped tune
the number of training epochs and also prevented overfitting. The noise in the loss plots is due
to the batch size used in stochastic gradient descent.

Figure 4: DNN Loss plots

Ideally, the validation line tracks well with the training line and they both increase as epochs
increase. CNN2 looks like it may have an overfitting problem since the loss function doesnôt
track very well to the training line. While the FFN2 validation line seems to be well
correlated with the training line, it stops after only 20 iterations, indicating it has stopped
learning sooner than FFN1, which goes to nearly 40 epochs. This generally results in a worse
model overall. This observation is also present when comparing CNN1 and CNN2.

6 Results

6.1 Classifier Performance

The results are published in figures below. The results of each model are displayed as a
confusion matrix with the model name and accuracy in the title. The confusion matrix helps
indicate what classes the model struggled to identify. Note there are different amounts of each
class, so a darker box doesnôt necessarily equate to better prediction. The missed predictions
(elements not on diagonal) are the most insightful way to visualize the limitations of the
model. As stated earlier, this dataset had very few gunshot examples and so it was removed as
a class in the context of this paper.

Figure 5: DNN results

As expected, the CNNs outperformed the FFNs. Additionally, the CNNs are nearly identical
in accuracy and confusion matrix.

Figure 6: Scikit-Learn classifiers with mean feature set input

The distinguishable diagonal on most of the confusion matrices indicates the models (aside
from Naµve Bayes) did indeed learn to classify the sounds to some degree. Also, notice how
some models performed better at detecting certain classes when compared to another model
with similar overall accuracy.

Figure 7: Scikit-Learn classifiers with specs feature set input

It should be clear that the specs features were less informative to the models and following
training, the classifier performance suffered. Some classifiers such as QDA, were almost as
bad as randomly guessing. Note that gradient boosting is missing. Since the spectrograms are
thousands of points, gradient boosting takes a very long time to train and for this reason, was
never fully evaluated.

Position Model Features Accuracy
Training Time
(seconds)

1 CNN1 specs 0.77 111

2 CNN2 specs 0.76 191

3 Gradient Boosting means 0.65 82

4 Random Forests means 0.62 5

5 Logistic Regression means 0.59 511

6 FFN1 means 0.58 12

7 SVN means 0.55 14

8 Random Forests specs 0.54 39

Table 3: Top classifiers

6.2 Discussion

As expected, the CNNs performed best by a large margin and both had roughly the same
results. CNN1, however has a more ideal loss plot (see section 5.3) and is less prone to
overfitting as a result and also trains faster, making it a superior model. Gradient boosting and
random forests, generally regarded as the best decision tree based classifiers, were next in the
list. Also, note that random forests trained extremely fast relative to other classifiers. The
FFN1 model was further down in the list, but also trained very fast. Finally, even the random
forests classifier using the óspecsô features (originally made for the CNNs) outperformed many
other classifiers that use the superior ómeansô features.

6.3 Conclusion

Given the noisiness in the data and the fact that there are ten classes to choose from, 0.77
accuracy is quite impressive. The paper on DNNs [2] published by the authors of the dataset
achieved 0.72 accuracy, indicating the CNNs used in this paper are improvements. There is,
however, some variability in the accuracy results of CNN1 and CNN2, and averaging several
versions of the same CNN may bring down the accuracy from 0.77.

The CNN1 is the best classifier and it takes spectrograms which are relatively fast to compute
on the fly for real-time classification. The downside is that it is slow to train and requires a
high-end GPU compared to the FFN, gradient boosting and random forests which run fine on
a CPU. The decision tree based methods, gradient boosting and random forests, also had

