LIVELEDEAR

Electrical Presentation

Brian Magnuson and Jake Garrison

Introduction

Vehicle Architecture

Architecture Summary

• Powertrain Blending

UW ECOGAR

- Tractive Force
- Operating Modes

Forward Powertrain

Engine: GM 1.7L B20 Turbo-diesel

Trans: GM MH-8 6-speed

Rear Powertrain

Motor: AM Racing (Remy) HVH-250 ESS: A123 7x15s3p Gearbox: GKN 9.59:1 Inverter: Rinehart PM150DX

UW ECOGAR

Block Connectivity Diagram

HV Block Connectivity Diagram

UW ECOCAR

HV + Standard LV Block Connectivity Diagram

UW ECOCAR

Full Electrical Block Connectivity Diagram

UWECDCAR

Fuse and Wire Selection

Fuse Selection Criteria

Load Conditions

- Nominal and Peak Current
- Operating Voltage
- Load Type (capacitive or resistive)
- System Conditions
 - I²t analysis
 - Ambient Temperature
 - Short-circuit Current
 - Intended Cycle Life

Inverter Worked Example

- 1.35 x 150 A ≈ 200 A sized fuse
- 700 VDC > 375 VDC
- Capacitive load = Time Delay fuse to prevent nuisance blows

UWECDI

Short circuit (i_{sc}) << Max allowable i_{sc} of fuse

Peak Current Case

A70QS35 to 800

At our estimated peak the fuse wont blow for 100 seconds, preventing unwanted nuisance blows

> Inverter (TPIM) • $i_{avg} = 150 \text{ A}$ • $i_{peak} = 500 \text{ A}$ • $\Delta t_{peak} = 30 \text{ sec}$

> > UW ECDCAR

Extreme Current Case

A70QS35 to 800

In the event of an overcurrent condition of 1 kA, our fuse will melt in under 2 seconds, preventing damage to the inverter

Still allows high current pulses to pass

uw ecogar

l²t Analysis

Inverter I²t Analysis

- Energy escapes from the fuse as it melts
- Known as l²t or fuse reaction time
- To prevent nuisance blowing due to transient pulses, ensure the following:

Under-Hood Derating

• Ambient hood temp after 103 mile EnEC event

33° C

- < 2 % fuse derating at the measured temp
- Smaller effect on less sensitive fuses

Ambient Temperature (°C)

uw ecoc

Life Cycle Analysis

Cycle life is found by calculating the ratio of the applied I²t to the fuse's nominal melting I²t, then looking at the table on the right

Tin plating of new fuse wire

Tin plating of aged fuse wire

Each time a short overcurrent pulse flows through the fuse the element will heat up, and permanently change. Enough pulses can cause failure

PULSE	CYCLE WITHSTAND CAPABILITY			
100,000 Pulses	Pulse Pt = 22% of Nominal Meiting Pt			
10,000 Pulses	Pulse Pt = 29% of Nominal Multing Pt			
1,000 Pulses	Pulse Pt = 38% of Nominal Maiting Pt			
100 Pulses	Pulse Pt = 49% of Nominal Meiting Pt			
1000 000 10000000000000000000000000000	Pulse IT (Avertage Moline IT)			

Note: Adequate time (10 seconds) must exist between pulse events to allow heat from the previous event to dissipate.

ELI

HV Load Table

Component	Fuse Size (A)	Wire Gauge (AWG)	Max Wire Ampacity (A)	Nominal Current (A)	Estimated Peak Current (A)	Measured Peak Current (A)	Cycle Life
BRUSA							
(Charger)	15	10 Shielded	80	12.5	9.4	10	>1,000,000
TPIM (Rine)	200	1/0 Shielded	450	182*	500	425	>100,000
APM (DCDC)	8	10 Shielded	80	1.8*	10	7.8	>100,000
HVAC	25	8 Shielded	106	9	25	11	>1,000,000
ESS	350	1/0 Shielded	450	196*	350	402	>1,000,000

UWECDCAR

= at risk components

* indicates measured value

LV Load Table

Component	Fuse Size (A)	Wire Gauge (AWG)	Max Wire Ampacity (A)	Nominal Current (A)	Estimated Peak Current (A)	Measured Peak Current (A)	Cycle Life
ECM	50	10 (GM)	60	0.5	45		>100,000
APM	150	4 (GM)	200	9.4*	90	72	>100,000
MVEC 1*	100	4	170	13			>1,000,000
MABx	2	18	10	1			>1,000,000
TPIM2	5	18	10	2			>1,000,000
BCM	10	18	10	1.7	8	8	>1,000,000
Coolant Pump	10	16	30	5	15		>100,000
HVIL	5	18	10	0.6			>1,000,000
NOX	5	18	10	1.5			>1,000,000
NH3	5	18	10	1.2			>1,000,000
MVEC 2*	100	4	170	25			>1,000,000
Urea Injection	15	18	10	10			>1,000,000
NOX	5	18	10	1.5	22		>1,000,000
Fuel Pump	20	16	30	12			>100,000
ACCM	10	18	10	0.125			>1,000,000

= at risk components

*MVECs serve as a fuse/relay bus for the subsequent components **All LV fuses are rated for temperatures from -40 to 125 degrees C

UWECDCAR

Load Accommodations and Efficiency

12 Volt Load and Accommodations

	AGM Battery Spe	ecs
Battery	CCA	Reserve (RC)
Group 35	620	100
AH	Initial Capacity	Min Engine Start Capacity
48	0.8	0.2

- Increased current draw
 - About 30 A total load added

WECDCA

- Accommodations
 - APM + Alternator
 - Upgraded 12 V battery

Efficiencies of 12 V System

• Added Efficiencies

- 2 MVECs to reduce load
- High Intensity Discharge Lamps
- Improved controls algorithms

Cooling Pump Efficiencies

Test: Pump Speed vs High Voltage Current Draw Sweep Target Result: Criteria 1: Maximum Battery Current (performance) Target Result: Criteria 2: Minimum DC-DC current (energy use)

Motor Speed (rpm)	HV DC-DC current (Amps @ 350V)	Battery Pack Current (Amps @ 350V)
4500	2.50	1.51
4000	2.25	1.50
3500	2.10	1.50
3000	2.00	1.51
2500	1.95	1.53
2000	1.90	1.54
1500	1.83	1.52
1000	1.70	1.42
0	1.70	1.45

ELI

LV Parasitic Current

Parasitic Load

Component	Normal draw (mA)	Max draw (mA)
Anti-Theft	0	1
Auto Door Lock	1	1
Body Control Module	3.6	12.4
Central Processing System	1.6	2.7
Electronic Control Module	5.6	10
Electronic Level Control	2	3.3
Light Control Module	0.5	1
Oil Level Module	0.1	0.1
Powertrain Module	5	10
Retained Accessory Power	3.8	3.8
Radio	7	8
Coolant Pump	0.1	0.1
ACCM	0.3	0.3
HVIL	400	400
Total (mA):	30.6	453.7

	Battery Specs	
Battery	CCA	Reserve (RC)
Group 35	620	100
AH	Initial Capacity	Min Engine Start Capacity
48	0.8	0.2

	HVIL Enabled	
Normal Time to drain battery (hr)	Min Time to drain battery (hr)	Min Time to drain battery (Weeks)
941.176	84.637	0.504

	HVIL Disabled	
Normal Time to drain battery (hr)	Min Time to drain battery (hr)	Min Time to drain battery (Weeks)
941.176	715.084	4.256

UWECDGAR

HV System Characteristics

HV Model

UW ECOCAR

HV Ripple Analysis

Simulation Results

UWECDGAR

Power Spectra	Density
Frequency (Rads/sec)	Frequency (htz)
25000	3978.876938
75000	11936.63081

In-Vehicle Results

UWECDCAR

HV Bus Charge and Discharge

Charge and Discharge Results

Simulation

In-Vehicle Testing

HV Safety and Serviceability

High Voltage Interlock Loop (HVIL)

• High voltage bus contactors are opened if:

- Either emergency stop switch is depressed
- ✓ Inertial switch is triggered, i.e. in a crash (8 G's)
- ✓ Loss of chassis ground reference or circuit isolation
- ✓ 12V battery is disconnected
- ✓ Severe under/overvoltage

ESS Safety

- Consolidated Pack
- 20 g lateral force
- Crush-resistant lid, easy to remove

VECOCAR

- Catch Plate
- Lexan battery terminal covers
- HV bus bleed-down within 40 seconds
- Battery test connector

HV System Safety

VTS

Specification	Production 2013 Malibu	Competition Target	Competition Requirement	UW EcoCAR2 VTS	UW EcoCAR2 Y3 Results	Percent Error*
Acceleration 0-60 mph	8.2 s	9.5 s	11.5 s	7	6.95	0.7%
Acceleration 50-70 mph (passing)	8.0 s	8.0 s	10.0 s	3.4	3.4	0.0%
Braking 60-0 mph	143.4 ft	143.4 ft (43.7 m)	180.0 ft (54.8 m)	143.4	130.88	9.6%
Highway Gradeability @ 20 min	10+% @ 60 mph	3.5% @ 60 mph	3.5% @ 60 mph	Pass	Pass	
Cargo Capacity	16.3 ft ³	16.3 ft ³	7 ft ³	Pass	Pass	
Passenger Capacity	5	>=4	2	5	2	
Mass	1589.6 kg	<2250 kg	<2250 kg	2160	2054	5.2%
Starting Time	<2 s	<2 s	<15 s	<2	P/F	
Ground Clearance	155 mm	155mm	>127 mm	pass	pass	
Vehicle Range	736 km	322 km [200 mi]	322 km [200 mi]	369 mi	tbd	
Charge-Depleting Range	N/A	N/A	N/A	47.6	47	-1.3%
Charge-Depleting Fuel Consumption	N/A	N/A	N/A	0		
Charge-Sustaining Fuel Consumption	787 Wh/km	N/A	N/A	619	tbd	
UF-Weighted Fuel Energy Consumption	787 Wh/km	634 Wh/km	N/A	215	tbd	
UF-Weighted AC Electric Energy Consumption	N/A	N/A	N/A	148	tbd	

UW ECOCAR

*Percent error relative to original model

Motor and ESS Designs

CS Trigger (%)	EV Range (mi)	
\frown		
U	42.4	
5	42.4	
0 5 10	42.4 40.3 38.1	
5 10 15	42.4 40.3 38.1 36.0	

UW ECOCAR

Challenges

Challenges

- Space Claim / Packaging
- 12 V Loads
- Serviceability
- 99% production ready
- Troubleshooting
- Cooling
- DRBFM

Knowledge Transfer

Methods of Knowledge Transfer

- Google Drive
- Customized team Wiki
- Lab fileserver
- Safety Binder
- Training sessions
- Lead training/dual leads
- Weekly meetings
- Recruiting young members
- Capstone projects

Questions?

