# LIVI EETEAR

# **ELECTRICAL PRESENTATION**

Jake Garrison and James Goin

# **Torque Vector Series PHEV**



- Performance
  - IVM-60 mph: 5.3s
  - 50-70 mph: 2.9s
  - Top Speed: 137 km/h (85 mph)
    - EV Range: 80 km (50 miles)
  - Power: 400 kW (536 hp)
  - Torque: 4200 Nm (3098 lb ft)

uw ecocar

- Unique Characteristics
  - Torque Vectoring
  - Electric Drivetrain

# LV SUBSYSTEM

# LV CIRCUIT DIAGRAM

### Added components



# LOAD CHARACTERIZATION

#### Accessory Draws (Added Components)

| Component                     | Nominal (A) |
|-------------------------------|-------------|
| Air Pump                      | 18          |
| Unitek BamoCar D3 (2)         | 2.8         |
| Radiator Motor                | 18          |
| ETAS                          | 2.5         |
| Coolant Pump                  | 25          |
| Volt ACCM                     | 0.125       |
| ВСМ                           | 10          |
| A123 Components (BMS CMS EDM) | 2.35        |
| Centerstack                   | 4.5         |
| нир                           | 3.5         |
| Bosch SMG 180 Gen 1           | 0.5         |
| Bosch INVCON Gen 2.3          | 0.5         |
|                               |             |
| Total                         | 116.775     |

| Battery Specifications (Optima YellowTop) |      |  |
|-------------------------------------------|------|--|
| Capacity (Ah)                             | 75   |  |
| Reserve Capacity (min)                    | 155  |  |
| Minimum Cranking Voltage (V)              | 10.5 |  |
| Minimum Cranking SOC (%)                  | 20   |  |
| Cold-Cranking Amps (A)                    | 900  |  |

| Parasitic Draws                       |              |          |  |
|---------------------------------------|--------------|----------|--|
| Component                             | Nominal (mA) | Max (mA) |  |
| Radio                                 | 12           | 22       |  |
| Powertrain Control Module             | 19           | 44       |  |
| Keyless Entry Module                  | 12           | 15       |  |
| Oil Level Module                      | 5            | 10       |  |
| Light Control Module                  | 4            | 7        |  |
| Illuminated Entry                     | 13           | 22       |  |
| HVAC Power Module                     | 11           | 31       |  |
| Heated Windshield Module              | 9            | 20       |  |
| Electronics Control Module            | 14           | 33       |  |
| ETAS                                  | 20           | 44       |  |
| Auto Door Lock                        | 6            | 11       |  |
| Anti-Theft System                     | 6            | 8        |  |
| Body Control Module                   | 11           | 19       |  |
| Multi-Function Chime                  | 6            | 16       |  |
| Retained Accessory Power (RAP) Module | 6            | 22       |  |
| Twilight Sentinel Module              | 7            | 11       |  |
| ON Star Module                        | 8            | 16       |  |
|                                       |              |          |  |
| Total                                 | 169          | 351      |  |

| Parasitic Depletion from 100% to 20% SOC |           |
|------------------------------------------|-----------|
| Nominal at 115 mA                        | 2.1 weeks |

# LV SIMULATION OVERVIEW

#### Overview

- Cranking transient analysis
- Steady state parasitic load analysis

#### Features

- Made in Simscape
- Adaptive physical battery and starter model
- User-defined:
  - Battery chemistry
  - Accessory loads
  - Custom duty cycle
  - Cranking load profile
  - Efficiency

#### Limitations

- Lack of component specs and stock vehicle benchmarks
- Only major loads accounted for
- Poorly defined duty cycle
- Impedance parameters
- 12V battery chemistry undecided
- Runtime versus precision

#### Assumptions

- Stock Camaro loads
- Motor cranking load
- Constant load duty cycles
- Constant ambient temperature



## LV BUS MODEL



# CRANKING SIMULATION



# HV SUBSYSTEM

# HV CIRCUIT DIAGRAM





# BOSCH BRUSA DENSO

### ESS DIAGRAM



# ESS DEVELOPMENT



# ESS DEVELOPMENT





| Energy Storage System |                     |  |
|-----------------------|---------------------|--|
| Voltage               | 350 V               |  |
| Capacity              | 18.9 kWh            |  |
| Range                 | 50 miles            |  |
| Modules               | 7                   |  |
| Packaging             | 15s3p               |  |
| Chemistry             | Li-Ion<br>Phosphate |  |

**UWECOGAR** 

# HV SIMULATION OVERVIEW

#### Overview

- Bus ripple analysis
- Bus charge and discharge analysis
- Fuse melting analysis

#### Features

- Made in Simscape
- Physical Li-Ion pack model
- Compatibility with LV model
- User-defined:
  - Battery parameters
  - Switching frequencies
  - Load impedance

#### Limitations

- Lack of component specs
- Impedance parameters
- Transient profiles
- No drive cycle support (yet)

#### Assumptions

- Component spec sheet parameters
- Worst case scenario
- Switching frequency bounds 8 to 24 kHz
- Constant ambient temperature
- Constant motor torque (for now)
- Harness resistance is negligible



# HV MODEL



# HV BUS RIPPLE

Spectral Density



|                    | Frequency (Hz)     | 5,570.42 | 10,345.07 | 19,098.59 |
|--------------------|--------------------|----------|-----------|-----------|
| Ripple<br>Analysis | Voltage Ripple (V) | 5        | 6         | 4         |
| / 1101 y 515       | Current Ripple (A) | 6        | 8         | 2         |

**UWECOCAR** 

# HV BUS RIPPLE



|                    | Frequency (Hz)     | 5,570.42 | 10,345.07 | 19,098.59 |
|--------------------|--------------------|----------|-----------|-----------|
| Ripple<br>Analysis | Voltage Ripple (V) | 5        | 6         | 4         |
| 7 (101 y 515       | Current Ripple (A) | 6        | 8         | 2         |

UW ECOCAR

## BUS CHARGE AND DISCHARGE



# FUSE AND WIRE SELECTION

# FUSING OVERVIEW

### Load Conditions

- Nominal and peak current
- Operating voltage
- Load Type (capacitive or resistive)

### Source Conditions

- Power output
- Ambient temperature (derating)
- Short-circuit current (I2t analysis)
- Intended cycle life

### Standards

- UL certified
- IEC 60269 standard
- Mersen design reviews







ECOG

# WIRING OVERVIEW

### Exrad XLE Cable Specifications

- High voltage and current
- Automotive grade
- High dielectric insulation
- High temperature tolerance
- High bend radius
- Shielded (reduce EMI)
- Orange

### Conditions

• Fuse blows before cable fails

### Standards

- UL 758 and ISO 6722 accordance
- SAE certified
- Champlain design reviews





ГЕСПІ



# SELECTION OVERVIEW

| Component       | Fuse Size (A) | Wire Gauge<br>(AWG) | Wire<br>Ampacity (A) | Nominal Current<br>(A) | Peak Current<br>(A) |
|-----------------|---------------|---------------------|----------------------|------------------------|---------------------|
| Charger         | 12            | 10 Shielded         | 80                   | 12.25                  | 12.75               |
| Genset Inverter | 300           | 1/0 Shielded        | 339                  | 210                    | 400                 |
| TPIM (Inverter) | 200           | 1/0 Shielded        | 339                  | 200                    | 400                 |
| ACCM            | 20            | 10 Shielded         | 80                   | 12.5                   | 25.6                |
| Junction Fuse   | 350           | 1/0 Shielded        | 339                  | 250                    | 500                 |
| ESS             | 350           | 1/0 Shielded        | 339                  | 180                    | 612                 |

*Note: load profiles approximated from supplier specification sheet* 



# GENSET INVERTER EXAMPLE



### Requirements

- Capacitive load = time delay fuse to prevent nuisance blows
- 1.5 x 210 A (nominal) ≈ 300 A (rule of thumb)
- Allowed time at peak current:
  - 45 s (Genset  $\Delta t_{peak}$ ) < 150 s (fuse) < 300 s (cable)
- Max voltage
  - 375 VDC (ESS) < 700 VDC (fuse) < 1000 VDC (cable)
- Short circuit current
  - 7.34 kA (ESS) < 100 kA (fuse)



# GENSET INVERTER FUSE



### 300 A Fuse Specification

Model: Mersen A70QS300

- Type: Time Delay
- Max Voltage: 700 VDC
- Impulse: 100 kA I.R
- Temperature: 25°C

| Parameter | Current (A) | Melt Time (s) |
|-----------|-------------|---------------|
| Nominal   | 210         | >> 100        |
| Peak      | 400         | >> 100        |
| Extreme   | 1500        | 3             |
| Short     |             |               |
| Circuit   | 7.3k        | < 0.01        |

**UWECOGAR** 

# CUSTOM EMBEDDED CONTROLLER

# OUR OWN CAR CONTROLLER (O2C2)

### O2C2

- CAN / RS232
- Configurable channels
- Real-time commands and feedback
- Features:
  - 8-channel 12-bit ADC
  - 6-channel 12-bit DAC
  - 16 digital IO
  - 7 current drivers
  - Pulse width modulation
  - Custom driver set







# LV BENCH TESTING

### **Embedded Design Project**

- Documentation
- Part sourcing
- Prototyping
- Harness design
  - HIL harness
  - In vehicle harness
- HIL validation









# APPLICATIONS

### Examples

- Smarter MVEC + breakout
- Aerodynamic shutter control
- Fail-safe motor speed sensors
- Control non-CAN devices
- Smarter charge management system



uw ecoca

# NON-POWERTRAIN EMBEDDED CONTROL SYSTEM

# Charge Management System

### Reductions in energy consumption

- Direct 12V grid power
- Minimizing cooling pump use
- Optimizing the charger

### High level requirements

- User input
  - Charge complete
  - Input modes
    - Efficiency
    - Fast
    - Cost
- Operating requirements
  - CAN communication
  - 12V power





# STANDARD SYSTEM - BLOCK DIAGRAM



| Legend             |
|--------------------|
| 12 V Line          |
| 350 V Line         |
| 120 V / 240 V Line |
| 500K CAN Network   |
| 250K CAN Network   |
|                    |



## STANDARD SYSTEM - BLOCK DIAGRAM





## STANDARD SYSTEM - BLOCK DIAGRAM



# OPTIMIZED SYSTEM - BLOCK DIAGRAM



# OPTIMIZED SYSTEM - BLOCK DIAGRAM



# OPTIMIZED SYSTEM - BLOCK DIAGRAM



# CHARGER AND PUMP CONTROL STRATEGY



Results from 20% to 80% state of charge at 25°C ambient temperature



# NET EFFICIENCY GAIN

|                   |                  |                  | Percent Savings |
|-------------------|------------------|------------------|-----------------|
| Category          | Original Use (W) | Modified Use (W) | Per Category    |
| Minimizing pump   |                  |                  |                 |
| use               | 192              | 115              | 25-40%          |
| Direct 12V grid   |                  |                  |                 |
| power             | 264              | 243              | 8%              |
| Charging          |                  |                  |                 |
| optimization      | 5100             | 4845             | 3-4%            |
|                   |                  |                  |                 |
| Total power saved | 5556             | 5083             | 6-7.7%          |

# Total Energy Savings = 7.7%



# OPERATING LIMITATIONS

| Component                    | Rating                         |  |
|------------------------------|--------------------------------|--|
| 02C2                         |                                |  |
| Input Voltage Range          | 4.2-30 V                       |  |
| ADC                          | 12-bit accuracy                |  |
| DAC                          | 12-bit accuracy                |  |
| Memory                       | 256kB                          |  |
| Clock                        | 20 MHz                         |  |
| CAN                          | < 1 Mb/s                       |  |
| Temperature                  | 0-120 C                        |  |
| Electromagnetic Interference | >~4 inches from high voltage   |  |
|                              |                                |  |
| AC/DC P                      | ower Supply                    |  |
| Input Voltage                | 120/240 V +/- 12 V AC(50-65Hz) |  |
| Max Power                    | 500 W                          |  |
|                              |                                |  |
| F                            | Relay                          |  |
| Control Voltage              | 8-17V VDC                      |  |
| Max Current                  | 50A                            |  |



O2C2



12V Power Supply



Relay

**UWECOCAR** 

# UTILIZED COMMUNICATION BUSSES

### RS232

- Desktop development board
- HIL validation

### CAN

- Slave controller
- Simple master controller
  - Receiving values for optimization algorithm
  - Setting optimal values

#### **Used Network Data**

| Signal           | Name              | Туре |  |  |  |  |  |
|------------------|-------------------|------|--|--|--|--|--|
| Battery Pack     |                   |      |  |  |  |  |  |
| State of Charge  | bcm_soc           |      |  |  |  |  |  |
| Charger          |                   |      |  |  |  |  |  |
| Temperature      | getChargerTemp    | ТХ   |  |  |  |  |  |
| Current Request  | setChargerCurrent | RX   |  |  |  |  |  |
| Measured Current | getChargerCurrent | ТΧ   |  |  |  |  |  |
| Enable           | setEnable         | RX   |  |  |  |  |  |
| Cooling Pump     |                   |      |  |  |  |  |  |
| Measured Current | CP1_current       | ТХ   |  |  |  |  |  |
| Coolant Temp     | CP1_temperature   | ТХ   |  |  |  |  |  |
| Pump Request     | setPumpSpeedRpm   | RX   |  |  |  |  |  |
| Enable           | pumpOn            | RX   |  |  |  |  |  |
| Center Stack     |                   |      |  |  |  |  |  |
| User Mode        | userMode          | ТХ   |  |  |  |  |  |
| Charge By Time   | chargeByTime      | ТХ   |  |  |  |  |  |



# TOP 5 DFMEA LINE ITEMS

| Failure Mode   | Effects        | Cause of Failure | Prevention       | Detection     | RPN                             | Action           |
|----------------|----------------|------------------|------------------|---------------|---------------------------------|------------------|
| Insufficient   | Unable to turn | Poor or          | Durable and      | Not on CAN    | (7 * 3* 2) = 42                 | Get better       |
| Power          | on             | damaged power    | high quality     | network       |                                 | power supply     |
|                |                | supply           | supply           |               |                                 |                  |
| CAN Network    | Loss of        | Connection is    | Durable and      | No CAN        | (8 * 5 * 4) = 160               | Disable all      |
| Lost           | communication  | damaged or       | high quality     | Communication |                                 | inputs and       |
|                |                | unconnected      | wires            |               |                                 | outputs that     |
|                |                |                  |                  |               |                                 | originated from  |
|                |                |                  |                  |               |                                 | slave control    |
| Improper CAN   | Improper or    | Improper         | Proper CAN       | Improper or   | (8 * 3 * 7) = 168               | Throw flag and   |
| Message        | unknown CAN    | device           | addressing,      | unknown CAN   |                                 | keep checking    |
|                | message        | communication    | structure and    | message       |                                 | messages         |
|                | received       |                  | communication    | received      |                                 |                  |
| EMI Corruption | Signal         | Too close to     | Shielding, metal | Improper      | ( <mark>9 * 3 *</mark> 5) = 135 | Determine        |
|                | corruption     | high voltage     | containers, keep | messages,     |                                 | source of EMI,   |
|                |                |                  | away from high   | signals or    |                                 | increase         |
|                |                |                  | voltage          | corruption    |                                 | proximity from   |
|                |                |                  |                  |               |                                 | and proper       |
|                |                |                  |                  |               |                                 | shielding        |
| Overpowered    | Fuse blown     | Power surge,     | Fuse and proper  | Fuse blown    | (8 * 3 * 3) = 72                | Determine        |
|                |                | short, or over   | power supply     |               |                                 | source of issue, |
|                |                | loaded           |                  |               |                                 | correct it and   |
|                |                |                  |                  |               |                                 | replace fuse     |

# Improper CAN Message Handling



# DESIGN TRADE-OFFS

# Charge Management

- Charge time
- Static parameters
- Complexity

# O2C2

- Comfort and time
- Simplicity vs size
- Precision and features



Revision 1



Revision 2



**Revision 3** 

uw ecocar

# FUTURE EVALUATION

 Directly measure power consumption with and without the Charge Management System

• Optimization based on real parameters

• Dynamic parameters





# KNOWLEDGE TRANSFER

# KNOWLEDGE TRANSFER

### Collaboration

- Slack
- Google Drive
- Wiki
- Safety Binder

### Training

- Weekly Design Review
- Training Workshops
- Extensive Lead training
- Weekly meetings
- Recruiting young members
- Capstone projects

### Lessons Learned

- Time management
- Collaboration
- Professionalism
- Effective communication
- Priority setting



## **HV HARNESS WORKSHOP**





**UWECOGAR** 





# THANK YOU







# QUESTIONS?