

Pulmonary Function Testing with a smartphone

Jake Garrison

Motivation: Improve Spirometry

+

Medscape CME

Percent Change in Age-Adjusted US Death Rates

Spirometry is used to...

- **Diagnose:** asthma, COPD and other conditions that affect breathing
- Monitor: lung health and treatment

CVD = cardiovascular disease GOLD. Available at: http://www.goldcopd.org/OtherResourcesItem.asp? I1=2&I2=2&intId=969. Accessed May 18, 2009.

Lung Disorders

Problem	Cause		
Restriction (restricts input)	 Intrinsic: Pulmonary fibrosis Other scarring (interstitial) Extrinsic: Obesity Scoliosis Neuromuscular 		
Obstruction (obstructs output)	 COPD Chronic Bronchitis Emphysema Asthma Bronchiectasis Cystic fibrosis* 		

Spirometry

[breathe meter]

History

Metrics

Metric	Units	Description
FEV1	Liters	Exhaled volume in first second
PEF	Liters/second	Peak flow
FVC	Liters	Total exhaled lung volume
FET	Seconds	Total exhale duration

Predicted Normal

Depends on:

- Age
- Height / Weight
- Gender / Ethnicity

Interpretation

Given: Spirometry results and patient information...

Problem: Spirometry is great *but*...

- Inconvenient
- Hard to use
- Expensive
- Outdated
- Not used frequently enough
- Error prone without training

Example Errors:

Solution: Sound-Based Smartphone Spirometry

The good

- Portable, fits in pocket
- Frequent measurements
- Easy to use, no accessories
- Coaching feedback, error detection
- Powerful CPU, internet, easy to develop

The bad

- Sound is a weak proxy for airflow
- Requires data, complex modeling
- Background noise
- Lots of smartphones to support

Thesis Statement

Explore data driven methods for computing spirometry metrics from a smartphone recording of a spirometry effort

Contributions

- Spiro AI system
- CurveNet neural network
- Organized spirometry sound dataset
- Training and evaluation pipelines
- iOS app and backend

Measuring lung function is as convenient and simple as taking a selfie

As a result people...

- Developing lung conditions find out sooner
- With lung conditions have a **better record** of their respiratory health
- In more of the world can **benefit** from spirometry

~ improved overall quality of life ~

Prior Mobile Spirometry Work

2011 **SpiroSmart:** Measure lung function via smartphone microphone **mobileSpiro**: Mobile Spirometry for asthma management 2013 **mCOPD:** COPD sound based diagnosis and exercise system **SpiroCall:** Measure lung function via phone call 2017 Automatic Characterization of Errors via spirometry curves SpiroConfidence: Error detection from sound of effort

Introducing: Spiro Al

Input: Sound of a forced expiratory effort

Output: Spirometry report with including curves

- Quality Control: Automatic improper effort rejection
- *Reproducibility metrics*: Automatic for multiple trials
- Data Driven:
 - Trained on over **5000 patients**
 - Evaluated on over **700 patients**
- Based on **SpiroSmart** concept and dataset

Physical Modeling

Two difficult tasks:

- 1. Measure airflow rate at position of phone microphone via sound
- 2. Transform to flow rate at mouth

Non-idealities: human, phone, environment

SpiroSmart Dataset

~5000 total patients

System

Spiro AI System

Trimming Algorithm

- Decode audio as 16kHz mono integer array
- Find room noise: quiet region near beginning or end
- Find **start**: 1st *impulse* relative to room noise
- Find end: 2nd *impulse* relative to room noise or end of array

Passing > 95% of the time (based on 2000 or 10% random sampled)

*segmented spirometry audio, plotted as waveform absolute value

Confidence Model: Binary

Goal: Quality control

Reject low quality audio efforts such as:

- Coughing, speech, background noise
- Too far away, too close, incomplete

Dataset:

- Binary labeled audio examples from SpiroSmart set and other sources*
- 40k = 20k accepted + 5k rejected + 15k external negatives*

Output: Confidence percentage (*accept* >70% confidence)

Prediction Model: Regression

+

Goal: Generate spirometry report for accepted audio effort

Dataset:

- Exhale audio with paired groundtruth (FEV1, FVC, curves ect)
- 14k accepted audio entries from ~4k patients with reproducible groundtruth

Output: Spirometry test report...

Outputs

FEV1	FET (duration)
FVC	Percent Predicted
PEF	Confidence Percent

Manual Feature Extraction

- 64 Amp-based features
- 16 Freq-based features
- 80 Mel-based features
 - = 140 total features

Classical Machine Learning

Only as good at the manually defined input features are...

- Use different subsets of the 140 manual features as inputs
- Train binary for Confidence output, regression for Prediction output(s)
- Trained with **5-fold cross validation** and optimized with **gridsearch**

Туре	Binary Model	Regression Model
Decision Tree	Gradient boosting (GBM)	Gradient boosting (GBM)
Linear	Logistic regression L2 norm	Linear regression L2 norm
Sanity Check	Naive Bayes (NB)	Guessing mean

Also investigated:

Random forests, K-nearest neighbors, SVM and L1 regularization

Deep Learning via Neural Network

Hope that it extracts meaningful features and does not find a way to cheat...

- Raw audio input, **automatic** feature extraction learned through training
- Easy to parameterize (used for Confidence and Prediction)

Feature Map Extraction

Data represented as a 3D block volumes

Initialized as Mel spec

Spectrogram can be tuned in training

Convolution layer creates variants of the input via tuned filters

These variants are passed to the next convolution layer

More **specific** feature maps **deeper** in the net

Yields a stack of **small feature maps**

Output Prediction

Receives stack of feature maps

- Decides how to use them to **predict** desired output
- Either fully connected (FC), recurrent (RNN) or pooling

Either output single value (scalar), or sequence

Space Needle based Models Confidence Models ConfidenceNet ConfidenceCRNN **Prediction Models** ScalarNet (single output)

• CurveNet (sequence output)

Results

Confidence Model Results

Evaluation Set: 200 difficult accept/reject (balanced)

Input Feature Dimension:

- only mels: 80 Mel-spec derived features
- **all:** 140 Amp + Freq + Mel derived features

Model	Features	Accuracy	Fscore	Precision	Recall
ConfidenceNet	only mels	0.852	0.850	0.814	0.888
GBM	only mels	0.843	0.837	0.813	0.863
Log L2	only mels	0.821	0.821	0.775	0.873
GBM	all	0.895	0.891	0.870 📩	0.914
Log L2	all	0.850	0.845	0.819	0.873

important

Prediction Model Results

Evaluation Set:

700 unseen patients somewhat evenly distributed health wise

	Absolute Li i vi				
Model	Features	FEV1	FVC	PEF	FET
Mean Tracking	NA	0.78	0.68	1.90	1.73
CurveNet	only mels	0.48	0.50	1.39	1.72
ScalarNet	only mels	0.50	0.52	1.33	1.79
Lin L2	only mels	0.63	0.62	1.69	1.70
GBM	only mels	0.56	0.54	1.51	1.69
Lin L2	all	0.60	0.57	1.69	1.65
GBM	all	0.52	0.54	1.53	1.61

Absoluto Frror

Metric Information

Metric	Unit	Mean	Min	Max
FEV1	L	1.8	0.25	6.2
FVC	L	2.5	0.41	6.8
PEF	L/s	4.7	0.75	11.5
FET	S	7.4	1.6	15.2

CurveNet: Bland Altman plots

CurveNet Custom Cost Function

- **Output:** Flow vs Time (FT), not clinically useful
- Derive: clinical metrics with discrete operations
- **Cost Function:** Subjective combination of each error

Weight	Metric	Operation
0.2	FT curve	Outputted by CurveNet
0.2	VT curve	Cumulative sum of FT
0.3	FEV1	VT value at 1 second
0.2	FVC	Max of VT
0.1	PEF	Max of FT

CurveNet: Good Output

- 1. flow volume
- 2. flow time
- 3. volume time

groundtruth predicted

CurveNet: Underestimated

- 1. flow volume
- 2. flow time
- 3. volume time

groundtruth predicted

CurveNet: Overestimated

- 1. flow volume
- 2. flow time
- 3. volume time

groundtruth predicted

CurveNet Dissection

- Neural nets are a **black box**, even more so with a sequence to sequence model
- Post-training feature map analysis shows areas the model attends to

CurveNet regions of interest in first 2 seconds of exhale

Current Spiro AI System: Revisited

Deployment

Purpose: Data collection, user experience research, live demos, collaboration, validation

- Production **backend** powered by Spiro AI + docker (thanks Elliot and Dennis)
- FreshAir iOS frontend app (thanks Varun)
 - Patient input, clinic selection
 - Coaching videos, multiple languages
 - Capture multiple audio trials
 - Reject effort or return Spiro AI report
 - Compute reproducibility of session
 - Store results for trend reporting
- Available on Ubicomp Lab demo phones

What is next...

Data Collection

- Targeted, controlled data collection
- Longitudinal validation study (track trends)
- FreshAir app usability studies (clinical and home-use)
- Pursue FDA regulation

Technical

- Unify trimming and confidence model
- Sound based error classification
- On-device Sprio Al system

Final Pitch

Spiro AI:

"Make spirometry as EASY and FUN as taking a selfie"

AFTER

(dramatization)

Thanks