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Abstract

Spirometry is a widely employed pulmonary function test used to benchmark lung health
and assist in diagnosing chronic lung conditions such as chronic obstructive pulmonary
disease and asthma. When used frequently, such as in a home or portable setting, spirometry
results can predict pulmonary exacerbations or monitor the effectiveness of treatment.
Unfortunately, portable options are expensive and not truly portable by modern standards.
Prior work has shown it is possible to conveniently obtain spirometry metrics using the
built-in microphone of a smartphone, requiring no accessories. This work proposes Spiro AI,
an end to end sound-based smartphone spirometry system that includes automatic quality
control and complete spirometry reporting, bringing smartphone spirometry closer to reality.
Several machine learning models and deep learning architectures are thoroughly evaluated
as potential components in the system. Models are trained and evaluated on thousands of
patients sourced from a newly created dataset that is likely the largest audio based spirometry
dataset to date. The results suggest the problem becomes increasingly difficult when the
sample size scales from tens to thousands of subjects because the population is more diverse
and the quality of recorded maneuvers becomes difficult to control. Nonetheless, the results
suggest Spiro AI is capable of trend reporting and screening; however, in its current stage it
may not be precise enough for FDA certification.
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1Introduction

1.1 Overview

There are over two billion smartphone users in the world who spend an average of two hours
per day checking, searching, replying and browsing various applications, yet only average
one phone call per day. The smartphone is well beyond being considered a smarter version
of a phone; to many, it is a replacement to a music player, camera, notebook, calculator
and even computer. In fact, more people in the world have access to smartphones than
working toilets and because of smartphones, the line for these toilets has never been longer.
Smartphones, or rather, smart-appendages tell us everything we need to know whenever we
want to know it similar to a prompt personal assistant, or divine, all-knowing oracle.

Smartphones are equipped with several sensors to facilitate native functionality such as
sound and image capture, navigation, screen rotation and touch input to name a few. These
sensors can also be exploited for supplemental purposes and integrated to enable new,
innovative uses. For example, activity or fitness tracking applications fuse motion and
location information to discern the difference between running, biking, driving or sleeping.
This idea of exploiting something ubiquitous to conveniently serve another purpose is not a
new concept. Our prehistoric ancestors discovered that hollowing out a tree makes water
commuting more convenient and sharpening a rock makes hunting more productive. It is
our innate ability to make lemonade from lemons that has transformed portable phones into
the digital swiss army knife that dominates the lives of a quarter of the world’s population.

One innovative use of smartphones mobile health involves a niche subset of mobile applica-
tions that leverage embedded sensors in novel ways to measure and monitor information
relevant to an individual’s health and wellness. Mobile health applications typically measure
a relevant signal, such as motion or pulse, and sometimes use this to inform more generalized
insights such as sleep quality, calories burned or stress level. These signals are often obtained
through an alternative use of one or more sensors. For example, steps can be detected and
counted through observing a specific pattern of motion and even pulse can be inferred from
sensing the variation of color in a vein using a camera. Many of these informative signals
have trusted but less convenient measurement techniques, such as a heart rate monitor.
Rather than explicitly defining the patterns or variations that allow these signals to be
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measured on a smartphone, examples can be accumulated from both the smartphone and
trusted technique. These examples can then be used to teach a computer to automatically
interpret the desired signal from the original sensor information. The idea of teaching a
computer to learn through example is known as machine learning and is also implicitly a
form of artificial intelligence as it involves an artificial entity applying learned knowledge to
perceive information in an adaptive environment. With machine learning, our computers
make the lemonade for us.

This work described in this thesis is focused on the mobile health application of spirometry,
which is a common measurement technique for assessing lung function. This work, titled
Spiro AI, utilizes the sound of an individual’s exhale recorded via smartphone microphone
along with various machine learning strategies to report metrics common to spirometry.
These metrics, if accurate, can be used to screen for various respiratory conditions or track
symptoms and treatment effectiveness for those already diagnosed. Furthermore, performing
spirometry on a smartphone is far more convenient and affordable for the patient and
provides the care providers with a more detailed lung function assessment which can, in
turn, lead to better health outcomes for the patient.

1.1.1 Motivation

Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death
in the world and unlike many of the other top causes which have stabilized or even decreased
in prevalence, COPD is taking lives at an accelerating rate. Other potentially fatal respiratory
diseases such as lung cancer and tuberculosis are also listed as top causes of death. Together,
these diseases account for one-sixth of all global deaths and by 2030, they are estimated to
contribute to one-fifth of all deaths due to the accelerating mortality rate of COPD, despite the
decreasing rate of lung cancer and tuberculosis. Unfortunately, COPD has no cure and by the
time COPD is typically diagnosed the damage cannot be reversed. The symptoms, however,
can be managed using various treatment options. Prior to diagnosis, the progression can be
slowed or minimized if exposure to risk factors such as smoking or air pollution is reduced.

Spirometry is the measurement tool used by physicians to assess lung function in order
to screen for at-risk patients or to evaluate treatment options for those already diagnosed
with COPD or a number of other respiratory conditions such as asthma and cystic fibrosis.
Spirometry is typically conducted in the physician’s office as it requires a specific maneuver to
be performed which often requires coaching to ensure the effort is completed correctly. There
are also expensive home spirometry options as well as limited, portable variants. For those
who benefit from tracking the progression of a lung condition or treatment effectiveness,
the usefulness of spirometry is determined by the frequency at which measurements are
recorded. Clearly, there exists a dire need for affordable, portable spirometry options,
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especially for patients at risk or already diagnosed with conditions such as COPD, asthma
and cystic fibrosis. This work explores the prospect of performing spirometry tests with
only a smartphone as a potential solution to many of the issues surrounding screening and
management of respiratory diseases.

Spiro AI is based on the pioneering SpiroSmart publication which first proposed and eval-
uated a smartphone-based solution to spirometry six years ago [46]. Since the advent
of SpiroSmart, collaborations have formed between the University of Washington, Seattle
Children’s Hospital and clinics around the world with the goal of creating a massive dataset
for validating and improving the algorithms that power SpiroSmart. Today, there exists
smartphone audio recordings and spirometry ground truth for over 4000 different patients.
Additionally, several critical advancements in the field of artificial intelligence have surfaced
in the last decade which enables far more powerful predictive algorithms to be developed
using large amounts of data. This work takes advantage of this new data, as well as recent
advancements in artificial intelligence to propose and evaluate machine learning based
methods for smartphone-based spirometry.

1.1.2 Problem Statement

The purpose of this work is less about offering a single solution to smartphone spirometry
and more about investigating various machine learning strategies in order to understand
which techniques are most effective and practical as potential solutions. Therefore, the
problem statement is:

Explore data-driven methods for computing spirometry metrics suitable for respiratory dis-
ease management and screening from a smartphone sound recording of a forced expiratory
maneuver.

1.2 Results

The methods explored in this work are evaluated on thousands of different trials from
hundreds of different patients with various lung conditions whereas prior work evaluated
proposed methods on a sample size of around 50 local, mostly healthy subjects. The effec-
tiveness of a particular method is measured based on the overall error of various spirometry
metrics, as well the efficiency and feasibility of employing the method on a smartphone.
The Spiro AI system is comprised of several subsystems, each with a separate evaluation
strategy. The final error results are listed for each subsystem along with accompanying plots
and insights.

1.2 Results 3



Overall, the results suggest Spiro AI is indeed a promising and complete end to end
smartphone-based solution that will need further validation with both longitudinal studies,
as well as more diverse latitudinal studies before it can be considered a solution mature
enough for regulatory, Food and Drug Administration (FDA) certification.

1.2.1 Contributions

The main technical contributions derived from this work as a whole are listed below in
relative order of magnitude:

• Spiro AI, an end to end smartphone spirometry testing system
• The largest known dataset of cleansed and organized spirometry audio recordings with

paired, reproducible ground truth
• CurveNet, a novel sound to airflow neural network architecture bounded by physics
• A production-ready backend and iOS app suitable for Spiro AI demonstrations and

future data collection and user studies
• A generalized, extendable preprocessing, training and evaluation pipeline for use in

other audio-based machine learning problems
• Open source ultrasonic sensing and DIY spirometry toolkits

A less technical, but equally imperative contribution lies in the structure of this thesis. The
importance of multidisciplinary collaboration is stressed throughout this work and it would,
therefore, be hypocritical to only focus on the technical contributions without exploring the
background for why it is important and how it all works in a manner that is informative for a
general audience. Mobile health by definition requires expertise and input from engineers,
physicians, care providers, and regulators. A true mobile health solution will only arise
if these disciplines are speaking the same language and working together from the same
foundation.

1.3 Thesis Structure

Since one of the goals of this work is to motivate the problem and solution from the ground
up for a general non-medical or non-technical audience, the first portion of the thesis is
dedicated to providing adequate background on the respiratory system, spirometry, sound
and airflow physics, as well as machine learning. Consequently, these chapters do not
cover the main technical contributions and can be skipped based on the reader’s discretion.
Following the background sections, the related work is covered along with the experiments
that were conducted to guide the research. Next, a comprehensive coverage of the creation
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and organization of the dataset is presented, followed by an outline of the Spiro AI system
as well as the specifications for the proposed subsystems. Finally, the results are described
followed by a conclusion which alludes to future work and the main insights.

1.3 Thesis Structure 5





2Lung Background

In order to follow and appreciate the technical contributions outlined later in the thesis, a
thorough exploration of the human respiratory system is required. In the following chapter,
the evolution, anatomy, and physiology of the respiratory system will be covered in order to
provide a foundation for understanding respiratory diseases and spirometry. The aim of this
chapter is to provide a complete picture of how lungs function for a general reader who may
not have a significant background in physics or biology.

2.1 Oxygen Miracle„Whether it be the sweeping eagle in his flight, or the
open apple-blossom, the toiling work-horse, the blithe
swan, the branching oak, the winding stream at its
base, the drifting clouds, overall the coursing sun,
form ever follows function, and this is the law. Where
function does not change, form does not change.

— Louis Sullivan
(19th-century skyscraper pioneer)

Leonardo da Vinci once proposed that air was made up of two gases; one for breathing
and one for fueling fire. While his intuition was on the right track it is now known that
these two gases are in fact one: oxygen, or O2. Oxygen is the second most common gas
found in the earth’s atmosphere and third most common in the Milky Way; it plays a vital
role in life on earth whether it is photosynthesis, respiration, or in the case of intelligent
life, combustion. Oxygen gets its name from the French word oxygène meaning acidifying
constituent. This name is fitting as oxygen is the second most electronegative atom in the
periodic table after fluorine, and hence has strong tendency to rip electrons from other atoms.
As a consequence, oxygen has a relatively short lifetime in the atmosphere [13]. Fortunately,
due to photosynthesis, the supply in the atmosphere is continually replenished. Although
oxygen appears plentiful in the atmosphere today, there was a time, before the evolution of
photosynthesis where oxygen and subsequently life was scarce.
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Prior to around 3.5 billion years ago, Earth’s atmosphere and oceans were anoxic (lacking
oxygen). This is supported by the discovery of sulfur isotopes in sediments from this time
period which could only exist in the absence of oxygen [67]. Eventually, photosynthetic
cyanobacteria emerged and created oxygen as a waste product deep in the ocean. This
process is outlined by the photosynthesis equation in Figure 2.1 [34]. By about 2 billion
years ago, this precious oxygen began to trickle into the atmosphere leaving a trail of rust
along the ocean floor as a parting gift. This period of time from about 2.5 to 2 billion years
ago is sometimes referred to as the Great Oxidation Event. Prior to this, respiration was
anoxic, similar to anaerobic respiration, or fermentation. Unfortunately, at this time, oxygen
was more of a toxin to life than a nutrient given its aggressive properties. It took a few
ice ages and hundreds of million years for life to catch up and evolve an oxygen-tolerant
metabolism.

Fig. 2.1: The photosynthesis equation responsible for the majority of oxygen in the atmosphere

Oxygen, being as reactive as it is, can provide a large dose of energy to an organism, assuming
the organism is prepared to deal with it. Subsequently, more energy leads to the evolution
of larger and more advanced life. The spread of O2 in the atmosphere, in turn, gave rise
to O3, which triggered the formation of the earth’s protective ozone layer and allowed life
to emerge from the ocean and colonize the land. As illustrated in Figure A of 2.2, the
concentration of O2 in the atmosphere peaked at over 30% around 350 million years ago
and aside from minor oscillations, has stabilized at around 21%. Figure B of 2.2 shows
the more recent trends of atmospheric oxygen as well as its high correlation to the climate
change on Earth.

Even though oxygen is plentiful in our atmosphere, to many scientists, especially astrobiol-
ogists, the presence of atmospheric O2 is rare enough to be considered a miracle. In fact,
there are no known abiotic mechanisms that can produce an O2 enriched atmosphere. In
earth’s case, a whopping 99.9999% of the oxygen in the atmosphere was produced by life
[50]. As a result, if a planet with atmospheric O2 is discovered, it is logical to conclude that
life was the cause. Oxygen is perhaps the biggest contributor to Earth’s uniqueness and the
universal fuel that propels our rockets, cooks our food and powers the cells in our bodies.
The focus of this work is on that of the respiratory system which serves as the carpool lane
for delivering oxygen to our cells.
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Fig. 2.2: Oxygenation of the atmosphere where in (A) is on a billion year timescale, and (B) is on a
more recent million year scale. The Black triangle represents the same point on both plots,
although the axis may be scaled differently, they both represent O2 concentration

2.2 Evolution of Lungs

The purpose of a respiratory system is simple: oxygen in, carbon dioxide out. It elegantly
compliments the photosynthesis process outlined in 2.1 which has the opposite effect of
taking in carbon dioxide and outputting oxygen. Plants equipped with photosynthesis
and animals with their respiratory systems are therefore entangled in a fruitful symbiotic
dependence. But how could any living thing handle the acidic destructive properties of O2

which cripples even the durable properties of iron?

2.2.1 Diffusion

It is difficult to know for sure how the aerobic proto-bacteria came into existence. What
can be said is that they were around sixteen times more efficient than their anaerobic
ancestors and as a result multiplied and dominated as bacteria do best [27]. This aerobic
respiration is powered by a simple process known as diffusion, defined in Table 2.1. In this
case, O2 found in the water diffused into the bacterial cells and traded places with the CO2

which was diffused out. The cell’s phospholipid bilayer exceptionally facilitates this process
by selectively allowing O2 to enter and CO2 to exit. What follows is somewhat typical
for any dominant lifeforms, it consumes smaller, weaker competition and in turn grows
stronger. Single-celled aerobic bacteria became mitochondria which developed intracellular
compartments with specific functions. Finally, eukaryotic cells emerged which is what all
multicellular animals are comprised of. At a cellular level, all aerobic life utilizes diffusion,
but in order for organisms to grow into larger animals, the respiratory process needed
continuous improvement.
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Tab. 2.1: Relevant terminology for the evolution of lungs taken from the Oxford Dictionary

Term Definition

diffusion the process by which particles randomly and uniformly scatter from a high
concentration area to a lower concentration area, requiring little to no
energy.

gill the paired respiratory organ of fish and some amphibians, by which oxygen
is extracted from water flowing over its surface.

lung the paired respiratory organ of most vertebrates and some fish, by which
oxygen is extracted from external air pumped in by a process known as
breathing.

2.2.2 Gills

While several fascinating flavors of respiratory systems have been studied, the gist of it can
be conveyed through the evolution of aquatic to terrestrial animals. The available evidence
suggests gills, defined in Table 2.1, were present in the very earliest fish and were responsible
for the diffusion of oxygen. Since the amount of oxygen needed is correlated with body
mass and diffusion is correlated with surface area, it is no surprise fish evolved into a form
maximizing their surface area while minimizing volume. In general, the agility and efficiency
of a fish are correlated with the size of its gills. Gills were great for a while, but about
350 million years ago, due to Earth’s natural climate change cycle and the explosion of
atmospheric O2 (see Section 2.2), the oceans became shallower and fish needed a respiratory
upgrade to survive. At some point, a fish known as the lobe-finned fish developed gas-filled
organs that serve the function of respiration in addition to the already present gills. This is
the first known species known to have lungs.

2.2.3 Lungs

Contrary to popular belief, lungs, defined in Table 2.1, did not evolve from the air bladders
present in modern fish. It was actually the other way around [51]. The infamous lobe-
finned fish was perhaps overly equipped with a double respiratory system, and today it is
known that this is no longer a commonly occurring characteristic. So what happened to
this redundant combo? Other than a few types of rare fish such as Coelacanths (dee Figure
2.3) and Lungfish which even today possess the lung gill combo, the gene pool somewhat
forked.

Fish that continued to find refuge in the ocean did not need the complete lung package.
Subsequently, their lungs evolved into swim bladders which simply held gas and helped the
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Fig. 2.3: A rare coelacanth fish which processes lungs, gills and fins that evolved into land ready legs.
Until it’s recent re-discover, it was thought to be over 350 million years old and extinct for
65 million years.

fish control its buoyancy, but did not contribute to respiratory functionality. This type of fish
is the common ancestor for the majority of fish present today. In contrast, the more unique
fish with the lung gill combination became known as a tetrapods, meaning four feet, and took
advantage of their strong fins and newly processed lungs, that enabled them to make their
way out of the water onto land. Some tetrapods like frogs kept their amphibious abilities
while others, such as lizards traded their gills in for thicker skin and stronger, land optimized
legs. Tetrapods are the common ancestor of all terrestrial animals including reptiles, birds,
mammals, and humans. We owe our entire existence to the evolution of lungs and the
courageous tetrapods that carried them out of the water to land. When organisms more fully
devoted to air breathing are observed, it is apparent the anatomy of their respiratory system
is considerably more sophisticated, as illustrated in Figure 2.4.

Fig. 2.4: Key stages in the evolution of lungs in evolutionary order from 1 to 4
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As mammals grew, they required more oxygen which in turn required a larger, more ro-
bust and efficient respiratory system. Due to this necessity, mammals developed a strong
diaphragm and rib cage, as well as a rigid trachea to support and aid their growing lungs.
By the time humans emerged in the evolutionary chain, the mammal respiratory system
experienced many beneficial upgrades. Along the way, several other enhancements emerged
for different species solving different functional requirements. For example, in order for birds
to breath at altitudes above the Himalayas, the avian lung evolved to perform continuous
ventilation powered by the same muscles that flap their wings [51]. While several other
interesting examples exist, the remainder of this work will focus on the human respiratory
system. The next section will cover the physiology of human lungs and introduce key
anatomy.

2.3 Physiology of the Respiratory System

The following section will describe the components and functionality of the human respira-
tory system. In section 2.3.1, the basic anatomy will be covered and more specific functional
and physical details will be in the sections following.

2.3.1 Anatomy

The respiratory system is a complex biological system comprised of several organs facilitating
the inhalation of oxygen and exhalation of carbon dioxide among other things. For the
most part, respiration is handled by the lungs, but several other components are critical for
the complete functionality, namely, the nose, mouth, pharynx, larynx, trachea, bronchi and
bronchioles, and respiration muscles. In this section, a brief overview of these components
will be presented from the head moving down to the torso. See Figure 2.5 for a visual
reference. The following section is based on figures and definitions are from the National
Heart Lung and Blood Institutes(NHLBI) online educational material [35, 72].

Nose and Nasal

The nose and nasal cavity constitute the main external opening of the respiratory system.
They represent the entryway to the respiratory tract. Although the nose is typically credited
as being the main external breathing apparatus, its main role is to protect and support the
downstream respiratory processes. The windy passage is lined with mucus membranes and
small hairs that filter the air before it enters the respiratory tract, trapping harmful particles
such as dust, mold, and pollen.
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Fig. 2.5: (A) shows the respiratory system anatomy. (B) is an enlarged view of the airways, alveoli,
and capillaries. (C) is a closeup view of gas exchange between the capillaries and alveoli
[35].

Oral Cavity
The oral cavity, or mouth, is the only other external component of the respiratory system. It
provides similar functionality to the nasal cavity and acts as a supplement or alternative to
the air inhaled through the nose. Unlike the nasal passage, the mouth does not possess the
mucus or small ciliary hairs capable of filtering out particles. Instead, it is a direct path for
large bursts of input and output airflow due to its larger diameter and direct path.

Pharynx
The pharynx, or throat, is the next component of the respiratory tract. It resembles a funnel
made out of muscles acting as an intermediary coupling between the nasal cavity and the
larynx and esophagus. It houses the epiglottis which is a flap that performs the vital task of
switching access between the esophagus and trachea. This ensures air is routed through the
trachea, and the ingested food is diverted to the esophagus.

Larynx
The larynx represents a small section of the respiratory tract that connects the bottom
of the pharynx to the trachea. It is commonly referred to as the voice box and contains
thyroid cartilage, or Adam’s apple, cricoid cartilage and the vocal folds. Both cartilages offer
protection and support to other more sensitive components such as the vocal cords. The
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vocal cords are comprised of mucus membranes that tense up and vibrate, creating sound
and speech.

Trachea
The trachea, or windpipe, connects the larynx to the bronchi. It is a more rigid section
of the tract and is shaped like a corrugated tube approximately 5 inches in length. It has
several hyaline cartilage rings that keep the trachea open and prevent it from collapsing in
on itself due to the negative pressure encountered during inhalation. The hyaline cartilage is
actually C-shaped such that the open end faces the esophagus, permitting the esophagus to
expand into the trachea when larger pieces of food are swallowed. The trachea is lined with
mucus-producing epithelium and velcro-like cilia, which traps particles in the incoming air
and prevents them from gaining entrance to the lungs.

Bronchi
The lower end of the trachea splits the respiratory tract into two branches called the primary
bronchi. These pass through the top of the lungs and then branch into smaller bronchi.
These secondary bronchi continue carrying the air to the lobes of the lungs, then further
split into tertiary bronchi which further continue into what are called terminal bronchioles.
This inverted tree structure effectively tries to maximize its coverage within the lung similar
to how leaves of a tree attempt to maximize the surface area facing the sun. A single lung
has millions of terminal bronchioles less than a millimeter in length which directly deliver
oxygenated air into the alveoli. The larger bronchi contain C-shaped cartilage rings to keep
the airways open similar to those found in the trachea. In contrast, the tiny bronchioles
rely on flexible muscles and elastin to keep form. Also, like the trachea, the bronchi and
bronchioles are lined with mucus and cilia to trap any foreign particles.

Up to this point, the components described perform a similar respiratory function of moving
air to and from the lungs and therefore can be considered broadly as airways. These airways
can be classified as extrathoracic, as in outside the lungs or intrathoracic, or within the
lungs.

Lungs
The lungs are two organs located inside the thorax on the left and right sides, weighing
together about 3 lbs and occupying roughly the same surface area as a tennis court. They
are surrounded by a membrane that provides them with enough space to expand when
inflated with air. Due to the location of the heart, the lungs are not symmetrical. The left
lung is smaller and has only 2 lobes while the right lung has 3. The inside of lungs resembles
a sponge made of about 500 million small sacs called alveoli. These alveoli are found at
the ends of terminal bronchioles and are surrounded by capillaries through which blood is
routed. The lumen of these capillaries are so small that individual red blood cells are forced
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to line up in single file as they pass the alveoli. The epithelium layer covering the alveoli
performs the gas exchange with the blood flowing through the capillaries.

Respiratory Muscles
The muscle structure known as the respiratory muscles surround the lungs and permit the
inhalation and exhalation of air. The diaphragm is the main muscle in this system and
consists of a thin sheet of muscle that forms the floor of the thorax. It pulls air into the
lungs by contracting several inches with each breath similar to the plunger in a syringe being
pulled back. In addition to the diaphragm, multiple intercostal chest muscles are located
between the ribs and also aid the lungs in compression and expansion.

Conclusion
The ancient Greeks can be thanked for creating these interesting and unintuitive terms. Like
the Greeks, modern physicians, lawyers, and physicists tend to use large words, for reasons
up for debate. If up to a modern engineer, the names of the components would be much less
inspiring; perhaps input/output tubes (oral, nasal), coupler (pharynx, larynx), rigid pipe
(trachea) and manifold (bronchi), tank (lungs), energy converters (alveoli). Put this way, the
respiratory system does not seem so foreign and is far more analogous to an automobile in
that the engine intakes and exhausts air and other gases to perform its energy conversion via
combustion. Nature and human engineering have many commonalities which stem from the
logical nature of assembling something from the ground up to perform a specific function. In
the next section, the operation and design of the respiratory system will be discussed from a
functional point of view.

2.3.2 Functional requirements

Functional morphology involves the study of relationships between the structure of an
organism and the function of the various parts. The quote from the beginning of this chapter,
“form ever follows function”, is a guiding principle of functional morphology. In biology,
the idea of relating form and function originated with the French naturalist Georges Cuvier
(1769-1832) and was later elaborated upon by Charles Darwin. Because evolution occurred
on a timescale well beyond recorded history, it is near impossible to know the complex
mapping between a needed function and resulting biological component. Fortunately, due
to today’s rich biodiversity, similar components like the lungs, for example, can be studied
between species. The similarities in form may allude to a universal set of functions, while
differences may uncover species-specific function. In biology, these functions usually boil
down to staying alive in various unpredictable environments. For example, all species with
lungs have a way of creating positive and negative pressure to breathe, but the way this
function manifests is quite different depending on the type of animal. Scaled reptiles use
the same muscles to both move and breath, which means they, unfortunately, can only
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do one or the other. Mammals, which enjoy much more mobility, come equipped with a
diaphragm muscle for breathing which can be used independently of the limb muscles. The
low mobility in reptiles may make breathing less of a ubiquitous activity, but the sacrifice
rewards them with sharp claws and heavy armored skin. Engineering is also driven by a
functional, axiomatic design methodology. Similar observations arise when comparing the
material used in a tank versus a sports car. Rather than simply stating the facts making up
what the components do and where they are located as in the previous 2.3.1 section, this
section will attempt to answer the more difficult questions of why the human respiratory is
the way it is and how it works. Much of the content in this section is summarized from the
1988 article: Form and function of lungs[51].

Diffusive Medium
The cardinal function of the lung is gas exchange via the passive process of diffusion. The
metabolic waste product carbon dioxide is delivered by the circulation system to the alveoli,
where it is exchanged for fresh oxygen delivered via airways during inhalation. To best
support this, the diffusive contact medium between air and blood must have the properties
of maximal surface area (high flux) and minimal material (low resistance). Alveolar type
I epithelial cells, which make up the medium where diffusion occurs, perfectly fit this
requirement. Type I epithelial cells are utilized for diffusion because they are extremely
thin, flexible and modular, allowing them to occupy large, complex surface areas while
also enabling many diffusion pathways to maximize throughput. These cells line 80-90%
of the alveolar surface. Replacing the surface level skin diffusion found in primitive life
with internal breath powered diffusion mechanisms such as those found in alveoli is similar
to upgrading a sidewalk to a highway in the sense that both quantity (faster speed) and
efficiency (several lanes) are optimized.

Minimal Surface Tension
As the lung became increasingly efficient in terrestrial vertebrates, alveoli became progres-
sively smaller and more abundant, but at the cost of being more fragile. In order to prevent
these tiny bubble-like alveoli from popping, the surface tension of the air-water interface
the alveoli are immersed in must be minimized. The solution is another cell type, the type
II epithelial cell which secretes a foam-like substance known as surfactant. While type
II epithelial cells occupy only a small fraction of the alveolar surface, the surfactant they
produce is plentiful and crucial in reducing the surface tension. Furthermore, this foamy
medium provides an additional layer of protection to the sensitive alveoli.

Elastic Bag
From a functional point of view, in order to properly ventilate, the lung must behave like
an elastic bag capable of moving freely to allow expansion and contraction of all its parts.
This elasticity must be able to expand to fill available space and then contract without
completely collapsing on itself (unlike a balloon). The mammalian lung meets this functional
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requirement by employing a mixture of elastic fibers and collagen that have different
mechanical properties: elastic fibers are extensible up to about 130% their relaxed length
and inherently possess a useful recoil force. The collagen fibers, however, are inextensible
and have very high tensile strength to give the lung an acceptable degree of stiffness in order
to prevent too much contraction. This mixture of fibers yield an ideal balance between elastic
recoil and tensile strength, providing a framework well matched with the functional demand
to allow repeated and rapid contractions and expansions. One weakness of this design is
lungs lack any sort of protective outer tissue layer making them vulnerable to blunt force
and sharp objects. Fortunately, the rib cage which surrounds the lungs and other nearby vital
organs provide sufficient protection.

Automatic Maintenance
The lung surface, which is continuously exposed to our environment and made of a mosaic of
as many as 40 different cell types including the ones described above, must be continuously
cleaned and maintained in order retain high-efficiency diffusion. The combination of mucus
and ciliated cells perform these functions and are found throughout the airways where
large volumes of air flow into the lungs; regions most susceptible to foreign objects such as
dust. In advanced mammals, the process by which foreign material is removed is referred
to as the "mucociliary escalator" and it is quite elegant despite its unappealing name. The
ciliated cells lining bronchial tubes and trachea have a claw-like structure that catches any
foreign objects that would otherwise progress deeper into the lung. The mucus forms a
layer that flows up the trachea due to an upwards beating effect caused by the cilia. As a
result, this mucus and any debris caught by the ciliated cells are forced up and out of the
respiratory system, hence the name "mucociliary escalator". Normally the bronchial mucus is
flushed into the pharynx and swallowed unnoticed, however, when mucociliary escalator
becomes inactivated by perhaps nicotine or excessive dust, it receives assistance in the form
of coughing. This process also warms and moistens incoming air to better prepare it for
efficient diffusion.

Mobility Enhancement
As mentioned earlier, unlike reptiles, mammals can breathe while doing other heavily aerobic
tasks such as running and hunting. The ability to perform both of these in parallel gives
mammals a significant advantage and can be attributed to their dominance today. Humans
and other mammals take this advantage to an extreme and develop ways of allowing mobility
to enhance breathing. For example, as seen in the cantor of a horse, inhalation is coincident
with the lifting of the front limbs, which naturally pulls in air. When the limbs return to
the ground, the rib cage undergoes compressive force which forces air to abruptly exhale
in time for the next step. Human sprinters are familiar with these breathing harmonies as
they utilize them in order to achieve top performance. This example highlights how species
can improve survival by forming new functional requirements that are eventually baked
into the genetic code by natural selection. In this case, two independent and contradicting
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operations, running and breathing have fused together to create a single, synergistic system
that serves multiple functions.

Conclusion
This section provided the key functional requirements met by the ingenious design of the
human respiratory system. The final topic for this chapter covers the mechanics powering
the respiratory system, which completes the physiology of the respiratory system and serves
as the foundation for understanding Chapter 3 which explores common respiratory diseases
that are often a result of a disturbance or limitation in the system.

2.3.3 Mechanics of Breathing

Breathing, or pulmonary ventilation, is the process by which air flows into the lungs during
inspiration (inhalation) and out of the lungs during expiration (exhalation). Like all gases,
air flows from a region of higher pressure to a region of lower pressure and it is the pressure
difference between the atmosphere and the gases within the lung that permits breathing.
Muscular breathing movements and elastic tissue recoil are the main sources that contribute
to the pressure changes within the lung.

Inspiration
Inspiration is considered the active phase of ventilation because it is the result of muscle
contraction. During inspiration, the diaphragm and other muscles contract and the chest
cavity increases in volume in both the lateral and the anteroposterior (front to back) direc-
tions, similar to expanding a bellows. This causes negative pressure in the lungs and forces
the intake of air. Bernoulli’s Principle states when the speed of gas increases, the pressure
decreases, thus conserving energy. In the case of inspiration, the incoming air causes a
pressure drop in the extrathoracic, upper airways, causing constriction. Alternatively, the
intrathoracic airways within the lung expand as air fills the lungs.

Gas Exchange
Once the air reaches and enters the alveolar sacs, oxygen from inspired air diffuses across
the very thin epithelial wall of the alveoli to the adjacent capillaries. A red blood cell protein
called hemoglobin helps transport oxygen from the air sacs to the blood. Simultaneously,
carbon dioxide moves from the capillaries into the air sacs to be expelled during exhalation.
On a broader scope, the oxygen-poor blood being delivered to the alveolar structures comes
from tissues throughout the body. This blood returns to the right side of the heart and is
pumped via the pulmonary artery to the lungs where the critical gas exchange takes place
and oxygen eagerly trades places with the metabolic waste product, carbon dioxide. The
oxygen-rich blood in the alveolar capillaries returns through the pulmonary vein to the left
side of the heart which then pumps the oxygen-rich blood to the rest of the body.
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Expiration

Unlike inspiration which requires energy and muscular effort, expiration is very efficient
and being passive, adds no extra physiologic cost. During expiration, the diaphragm simply
relaxes which triggers the elastic lung tissue to recoil and subsequently the chest cavity
volume decreases. This increases the pressure within the lungs and pushes air back out to the
atmosphere. The airways undergo an opposite effect to inspiration, namely the intrathoracic
airways shrink while the extrathoracic counterparts expand.

When a person is physically active, abdominal muscles contract and push the diaphragm
against the lungs even more than usual. This rapidly pushes air out of the lungs but is no
longer passive as it requires extra energy.

Fig. 2.6: Mechanics of ventilation involve a cycle of inhalation and exhalation.

Energy Conservation

From a physics perspective, the potential energy created by the contraction of the diaphragm
is temporarily stored in the elastic tissues of the lung and chest muscles. Like a loaded spring,
this energy is released when lung and chest muscles recoil, causing exhalation as illustrated
in Figure 2.6.

2.3 Physiology of the Respiratory System 19



Control Mechanism
Most complex systems follow the standard control flow: a control signal triggers a particular
action, sensors observe a change in state due to the action and report feedback which is then
used to define the next control signal to yield the next desired state. In the advanced life of
mammals, the brain acts as the control signal generator to trigger muscle action. It relies on
sensors such as nerves, eyes, and ears to perceive the environment and choose actions to
optimally reach the desired state.

Respiratory muscle control works like most other voluntary and involuntary muscle control,
the signal originates in the brain and propagates to the destination muscles via the spine.
Respiratory control happens unconsciously to ensure breathing muscles contract and relax
regularly and automatically. To a limited degree, this control can be overridden, for example,
ones breathing rate can be altered consciously by breathing faster or by holding one’s breath.
Emotion, stress and physical activity can also affect breathing control.

There are a number of sensors in the brain, blood vessels, muscles, and lungs that provide
crucial feedback to the brain’s control strategy. Sensors in the brain and in major blood
vessels detect carbon dioxide or oxygen levels in the blood and change your breathing rate as
needed. Other sensors in the airways can detect irritants and trigger actions such as sneezing
and coughing. The alveoli are also equipped with sensing capabilities that can detect fluid
buildup in the lung tissues which are thought to trigger rapid, shallow breathing. Finally,
sensors in joints and muscles detect movement of your arms or legs and may play a role in
increasing your breathing rate during physical activity.

2.4 Conclusion

The goal of this chapter was to provide the reader with a sufficient understanding of why
humans have lungs, how they work and what the system is comprised of. For readers new
to respiratory science, hopefully, this provided sufficient background to understand the
upcoming chapters. For those who consider themselves advanced in the topic, perhaps the
broad and multidisciplinary overview provided a newfound appreciation and insight into the
evolution and function of the respiratory system.
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3Respiratory Disease

This chapter will explore the primary types of respiratory diseases, the common causes and
risk factors, as well as the treatment used to alleviate the symptoms. Following this, the
relevant epidemiology will be summarized in order to highlight the critical importance and
necessity for pervasive screening and diagnostic tools for respiratory disease.

3.1 Types of Respiratory Diseases

Lung diseases can be categorized into four general types: restrictive, obstructive, ventilation
and perfusion related disorders. In simple terms, restrictive means something restricts
air from filling the lungs, obstructive means something is obstructing airflow out of the
lungs, ventilation means something is preventing the gas exchange process from adequately
functioning, and perfusion means something is compromising the blood supply to or from the
lungs. The focus of this work is on restrictive and obstructive diseases as these forms impact
the most people and are typically diagnosed with spirometry based lung function tests, which
are outlined in the upcoming Spirometry chapter. Restrictive and obstructive diseases are
formally defined in Table 3.1; both share the same main symptom of shortness of breath
upon exertion, but obstructive lung disease is far more commonly encountered. While there
is no single cause for lung disease, the most common contributors include cigarette smoking,
air pollution, infections, or genetics.

Tab. 3.1: Definitions of the two main lung disease categories according to WebMD

Term Definition

restrictive Restrictive lung disease can make it difficult to fully fill lungs with air
due to some form of lung restriction. Such restrictions are often caused
by conditions causing stiffness in the lungs themselves or in other cases,
stiffness of the chest wall, weak muscles, or damaged nerves.

obstructive Obstructive lung disease causes shortness of breath due to difficulty exhal-
ing all the air from the lungs. It can be a result of damage to the lungs or
narrowing of the airways inside the lungs which can cause air to exhale
much slower than normal.
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Traditionally, the majority of the research and clinical attention has emphasized the obstruc-
tive group of diseases as they are by far the most prevalent; however, the work described
in this thesis can be utilized as a diagnostic and trend reporting tool for both obstructive
and restrictive diseases. Subsequently, both are considered. There are similarities between
restrictive and obstructive disease. As mentioned, they both have the common symptom of
shortness of breath, although for very different reasons. Coughing is also a common clinical
manifestation observed in restrictive and obstructive lung diseases. Usually, the cough is
dry or productive with white or colorless sputum. The frequent use of anti-inflammatory
medicines and supplemental oxygen to manage restrictive and obstructive lung disease is
another common feature shared by both conditions. Beyond this however, the causes and
other treatments employed are very dependent on the specific disease and how it manifests
itself in the respiratory system. The following sections will outline resitrictive and obstructive
disorders, along with treatments options based on information provided by WebMD and the
NHLBI[35, 53]

3.1.1 Restrictive Diseases

Restrictive lung diseases are characterized by reduced lung volumes; the ability of the lungs
to fully expand is diminished. They can be grouped into two anatomical categories: intrinsic
describes diseases occurring within lung, while extrinsic diseases occur outside the lungs.
Within these two categories there are over 200 known causes, making treatment difficult. For
example, fibrosis, causes the lung tissue to harden, making it very difficult for the lungs to
expand and intake air. Obesity or scoliosis, on the other hand, cause mechanical restriction
by squeezing the lungs which also impedes the lungs ability to expand. In most cases a
patient with a restrictive disease has to exert extra energy to intake air, but due to the
restrictive nature of the lungs, there is no place for the air to go. So more work is exerted
with less of a reward.

Intrinsic
Intrinsic lung diseases cause inflammation or scarring of the lung tissue (interstitial lung
disease) or result in filling of the air spaces with debris (pneumonitis). With the wide variety
of different causes of restrictive disease, it is often difficult to pin-point a specific cause.
When there is no known cause, the umbrella disease, idiopathic pulmonary fibrosis (IPF)
is diagnosed by default. Roughly 60% of patients fit into this category. When the cause
is identified, it tends to be one of the following: connective-tissue diseases, drug-induced
lung disease, environmental exposures (inorganic and organic dusts), or inflammatory lung
diseases such as sarcoidosis.

Figure 3.1 illustrates the effect of asbestos induced pulmonary fibrosis on the terminal
bronchi and alveoli which facilitate diffusion. In the normal lung (Figure A of 3.1), the
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space between the alveoli and blood supply is very small, on the order of 0.2 µm, which is
about 7/1,000,000ths of an inch. This enables oxygen to diffuse efficiently and very quickly
(roughly 0.75 seconds). In contrast, the lung tissue affected by fibrosis (Figure B of3.1),
has a thickened membrane. Although diffusion can still occur, the increased thickness and
density of the membrane between the air and blood supply greatly reduces the speed and
efficiency of diffusion, which in turn reduces the effectiveness of each breath. To further
complicate matters, over time patients with IPF replace their normal elastic lung tissue with
stiff fibrotic scar tissue which is much less elastic. The end result of IPF is damaging on two
fronts: 1) less air can come in and out, and 2) less of the oxygen in the air that does make it
into the lungs is diffused into the blood.

Fig. 3.1: Asbestos induced pulmonary fibrosis. (A) Control lung shows normal terminal bronchi and
alveoli. (B) Intratracheal instillation of crocidolite asbestos induces fibrosis (14 days after
exposure) [6].

The top five most common intrinsic restrictive disorders include:

• Idiopathic pulmonary fibrosis
• Interstitial lung disease
• Pulmonary Fibrosis
• Sarcoidosis
• Pneumoconiosis

Extrinsic
Extrinsic or extra-pulmonary respiratory diseases effect the exterior components responsible
for ventilation of air, such as the chest wall, exterior lung tissue, and respiratory muscles.
These diseases can be neuromuscular (polio), nonmuscular (scoliosis), or due to foreign
material like asbestos trapped between the chest wall and lung exterior. Imagine being bear
hugged by Dwayne "The Rock" Johnson and also trying to take a deep breath.

The top five most common extrinsic restrictive disorders include:
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• Obesity
• Pleural Effusion
• Myasthenia gravis
• Scoliosis
• Neuromuscular disease, such as muscular dystrophy or Lou Gehrig’s Disease (ALS)

3.1.2 Obstructive Diseases

Imagine taking a deep breath and then trying to exhale through a drinking straw. This
is similar to what a patients with obstructive lung disease deals with on a regular basis.
Obstructive lung disease makes it difficult to exhale old CO2 rich air from the lungs because
of the narrowing of the airways, or forms of lung damage. Exhaled air is expelled more
slowly than normal and at the end of a full exhalation, an abnormally high amount of air
may still remain trapped in the lungs. Obstructive lung disease makes breathing especially
harder during increased activity or exertion. As the rate of breathing is increased and the
lungs work harder, the amount of fresh air circulated through the lungs is decreased because
obstructed exhalation cannot keep up. This results in hyperinflated lungs with too much
stale CO2 and not enough fresh O2. Over time hyperinflation can result in a more permanent
clinical feature known as "barrel chest", which describes a chest with a large front-to-back
diameter.

Unlike restrictive diseases which have hundreds of potential causes, the most frequently
encountered conditions associated with obstructive diseases are far more limited and in-
clude:

• COPD
• Asthma
• Bronchiectasis
• Cystic fibrosis

These conditions, which may exist simultaneously, are outlined in the following subsec-
tions.

COPD
Chronic obstructive pulmonary disease (COPD) is an irreversible, progressive chronic in-
flammatory lung disease encompassing several conditions, most commonly emphysema and
chronic bronchitis. It is by far the most deadly respiratory disease as it is the 3rd (and rising)
cause of overall death with an estimated economic cost of $2.1 trillion in 2010 [52]. Less air
flows in and out of the airways because of one or more of the following: reduced elasticity
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of airways and alveoli, destruction of alveolar walls, inflamed and thickened airways with
excessive mucus production.

Fig. 3.2: (A) is a healthy lung with most of the alveoli still intact. (B) shows a lung with emphysema
which characteristically has more open space once occupied by now collapsed alveoli.

Emphysema is a condition in which the alveoli walls are destroyed as a result of damaging
exposure to cigarette smoke and other irritating gases and particulate matter. As a result,
the air sacs lose their integrity and collapse, leading to fewer and larger air sacs instead
of several tiny efficient ones. The micrograph in Figure 3.2 shows the preserved alveoli in
the healthy lung (A) versus an emphysemic lung (B) which has large, ill-defined spaces
secondary to collapsed alveoli.

Chronic bronchitis targets the larger airways and involves inflammation of the lining of
the bronchial tubes. It is characterized by daily cough and excessive mucus production. In
chronic bronchitis, the lining of the airways stays constantly irritated and inflamed, causing
airway swelling. As a result thick mucus forms in the airways, further obstructing the airways
and making it hard to breathe.

Most people who have COPD have both emphysema and chronic bronchitis; however, the
severity of each condition varies from person to person, thus, the collective term COPD is
more accurate. Figure 3.3 illustrates the effects of both emphysema and bronchitis.

COPD is caused by long-term exposure to irritating gases or particulate matter. Most people
who have COPD smoke or used to smoke; however, up to 25% percent of people with
COPD never smoked. Longterm exposure to other lung irritants such as air pollution,
chemical fumes, or dusts can also contribute to COPD. A rare genetic condition called alpha-1
antitrypsin (AAT) deficiency can also cause the disease. Other respiratory diseases such as
asthma can also progress into COPD if left untreated long enough.
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Fig. 3.3: (A) shows example of healthy lungs. The inset image shows a detailed cross-section of
the bronchioles and alveoli. (B) shows lungs damaged by COPD, including damage to the
bronchioles and alveolar walls [35].

Symptoms of COPD include shortness of breath, chronic cough, , wheezing, excess sputum
production and chest tightness. People with COPD are at increased risk of developing heart
disease, lung cancer and a variety of other serious conditions. Since COPD develops gradually,
its progression can be slowed or prevented by minimizing exposure to risk factors, such as
smoking. It is usually diagnosed in middle-aged or older adults. While there is no cure or
way to reverse the damage, COPD is treatable. With proper management, most people with
COPD can achieve good symptom control.

Asthma

Asthma is a chronic lung disease associated with inflamed and narrowed airways, which
makes breathing difficult and triggers coughing, wheezing and shortness of breath. For
many people, asthma is a minor nuisance. For others, it can be a major health problem that
interferes with every day activities and may lead to life-threatening acute asthma attacks.
The symptoms may flare-up or be more active in the morning or at night.

The inflammation caused by asthma makes the airways swollen and sensitive, causing them
to react strongly to certain inhaled particulates. When the airways react, the muscles tighten,
further narrowing the lumen of the airways and allowing less air to enter the lungs. This
also causes the cells in the airways to generate more mucus than usual, further blocking the
airways. This effect is illustrated in Figure 3.4(1).

Asthma affects people of all ages, but it most often starts during childhood. In the United
States, more than 25 million people are known to have asthma. About 7 million of these
people are children, making it the most common non-communicable disease among children
[5].
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The exact cause of asthma is not known. Researchers believe both genetic and environmental
factors contribute to the development of asthma, usually early in life. These factors include:
parents with a history of asthma, presence of allergies, or early childhood respiratory
infections that manifest while the immune system is still developing. While it can not be
cured, asthma symptoms can be adequately controlled. Treatment can typically reverse the
inflammation and narrowing occurring due to asthma. Rescue inhalers are used to treat
acute symptoms and maintenance inhalers are employed to prevent symptoms. Severe cases
may require longer acting inhalers and oral steroids to counteract the inflammation and keep
the airways open. Because of these treatment options, most people who have asthma are
able to effectively manage the disease and end up living healthy, active lives. Not long ago,
asthma was included in COPD, but since it is episodic and reversible, it has come out from
under the COPD umbrella. That being said, asthma can advance to COPD if left untreated or
if poorly managed.

Fig. 3.4: (A) shows example of healthy lungs. The inset image shows a detailed cross-section of
the bronchioles and alveoli. (B) shows lungs damaged by COPD, including damage to the
bronchioles and alveolar walls [35].

Bronchiectasis
Bronchiectasis is a condition in which damage to the airways causes them to widen and
become loose and scarred. It is usually the result of repeated infection or other conditions
that injure the airway walls or prevents the airways from effectively clearing mucus. See
Figure 3.4 (2) for an illustration. When mucus cannot be cleared, it builds up, creating an
environment in which bacteria can thrive. This leads to repeated, serious lung infections
causing irreversible airway damage. Eventually, bronchiectasis can lead to serious health
problems, such as respiratory failure, atelectasis, and heart failure due to lack of inadequate
oxygen intake.

Common childhood infections such as whooping cough and measles used to be responsible
for many cases of bronchiectasis. However, due to modern vaccinations and antibiotics avail-
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able in developed countries, these causes are now much less common. Instead, bronchiectasis
usually is due to a medical condition or infection that injures the airway walls or interferes
with the airways ability to clear mucus. Examples include infections such as severe pneu-
monia or tuberculosis, and conditions such as cystic fibrosis, immunodeficiency disorders
and primary ciliary dyskinesia. Bronchiectasis doesn’t always affect both lungs. When only
one part of the lung is affected, the cause is typically attributed to a blockage rather than
a medical condition. Congenital bronchiectasis, while less common, stems from a defect
occurring during lung development of the fetus.

Cystic fibrosis
Cystic fibrosis (CF) is an inherited genetic disease of the secretory glands which produce
mucus and sweat. People with CF must inherit two faulty genes, one from each parent;
therefore, it is likely the parents do not have the disease themselves. CF affects the whole
body, including the lungs, pancreas, liver, intestines and sinuses, but the focus here will be
on the lungs.

CF leads to almost half of the cases of bronchiectasis in the United States because it causes
mucus to be excessively thick and sticky, leading to airway blockage. Subsequently much
of the bronchiectasis description above applies to CF. Since CF also affects the entire body,
there are many other detrimental effects of the disease such as digestive and malnutrition
issues, osteoporosis, infertility and imbalances in blood minerals to name a few.

3.1.3 Common Lung Disease Treatments

While lung diseases spawn from a multitude of factors, the way they manifest can be
categorized into a few types as described in the previous sections. Most lung diseases have
the common symptom of shortness of breath, and therefore most basic treatments attempt
to alleviate this by opening up the respiratory airways. There are also specific treatments
directed at certain types of respiratory diseases. This section will cover the broad treatment
options and a few of the more specific treatment options.

Medicine
In the case of medicine, there is rarely a "one size fits all" solution. Different concentrations
and combinations can have variable effects, especially when generalized to all people.

Inhaled bronchodilators are often a preferred treatment approach because they are delivered
straight to the airways and lungs and work very quickly. They are often used to treat
obstructive diseases like asthma and COPD due to their ability to relax the airway muscles,
making it easier to breathe. There are different types of bronchodilators and the specific one
used is dependent on the patient characteristics. Certain products are fast acting (albuterol),
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while others provide a more lasting relief (formoterol, salmeterol, tiotropium). Inhaled
corticosteroids can also be employed to treat airway inflammation.

If the cause is related to mucus buildup, expectorants, which help loosen the mucus in your
lungs, can be prescribed. They often are combined with decongestants, which may provide
extra relief. Mucus thinners, such as acetylcysteine, make mucus easier to cough up by
loosening it.

If the respiratory disease is caused by ongoing inflammation, which can apply to both
restrictive and obstructive diseases, oral medicines that suppress the immune system may
be used. These include corticosteroids such as prednisone and immunosuppressants like
azathioprine among others.

Infectious causes of lung diseases, such as bronchiectasis are managed by initiating prompt
antibiotic therapy with oral antibiotics such as amoxicillin or macrolides and in more serious
cases, intravenous antibiotics.

Medications available to treat most causes of restrictive lung disease are limited. Two drugs,
Esbriet (pirfenidone) and Ofev (nintedanib), are FDA-approved to treat idiopathic pulmonary
fibrosis. They act on multiple pathways that may be involved in the scarring of lung tissue.
Studies show both medications slow disease progression in patients based on objective
spirometry measures, although experts have yet to reach a consensus on their effectiveness.
Other evidence shows the antioxidant N-acetylcysteine may help prevent lung damage in
these patients.

While not typically thought of as a medicine, drinking plenty of fluid, especially water, helps
prevent airway mucus from becoming thick and sticky. Good hydration also helps humidify
the respiratory tract and keeps mucus moist and slippery, making it easier to cough up.

Oxygen Therapy

Many lung diseases result in low levels of oxygen in the blood due to poor air intake.
Supplemental oxygen therapy aims to augment the oxygen supply and can help reduce
shortness of breath. Depending on the case, oxygen therapy may only be needed during
sleep and exercise, while in more severe cases it is needed on a continual basis. Non-invasive
positive pressure ventilation (BiPAP) is also a commonly used method. It uses a tight-fitting
mask and a pressure generator to assist breathing and is helpful for people with obesity
hypoventilation syndrome and in patients with specific nerve or muscle conditions causing
restrictive lung disease.
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Lifestyle Changes
Many lung diseases spawn from poor lifestyle choices. The good news is, many of these
habits can be changed with effort and there are pulmonary rehabilitation programs to
help facilitate and assist patients with these positive lifestyle changes. Common lifestyle
changes include, smoking cessation, healthier eating (especially if obesity is a cause), regular
exercising, education, breathing therapy, and living and working in an environment with
cleaner air.

Surgery
Surgery usually is a last resort for people who have severe symptoms that have not improved
with first line approaches including medicines and/or adjusting lifestyle.

When the walls of the air sacs are destroyed as in COPD, larger air spaces called bullae form
and can grow large enough to interfere with breathing. In a bullectomy, surgeons remove
one or more very large bullae from the lungs. In lung volume reduction surgery (LVRS),
surgeons remove damaged tissue from the lungs. In carefully selected patients, LVRS can
improve breathing and quality of life.

The most extreme surgery is a lung transplant in which surgeons remove the damaged lung
and replace it with a healthy donated lung. This is usually only recommended when the
condition is quickly worsening or very severe. A transplant comes attached with many risks.
New infections can emerge post transplant and the host body could reject the donor lung
thinking the transplanted lung is a foreign threat. Furthermore, the supply of donor lungs is
limited relative to the long waiting list of patients that could benefit from a lung transplant.
There are specific criteria that attempt to allocate the limited and precious supply of donor
organs in a fair way.

Conclusion
The aim of this section is to provide insight into the broad spectrum of lung diseases as
well as the common causes and treatments. The next section, 3.2 will explore the severity,
frequency and demographic distributions of the most prominent lung diseases.

3.2 Epidemiology

In order to emphasize the necessity for pervasive spirometry use, a brief survey of the
epidemiology of respiratory diseases will be summarized. The terminology used to quantify
magnitude and severity is shown in Table 3.2 Respiratory diseases are among the leading
causes of death worldwide as shown in 2008 worldwide data in Table 3.3. Unlike many other
causes of deaths, the mortality rate for respiratory diseases is actually rising with respect to
time. Between 1980 and 2014, the rate of death from chronic respiratory diseases, such as
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Tab. 3.2: Relevant terminology for the epidemiology section

Term Definition

prevalence The prevalence of a disease measures the number of cases of existing
disease in the population at a given time, or over a period such as the
past 12 months and is expressed as a percentage. It is calculated as
the number of people with the disease divided by the total population,
and is usually expressed as a percentage.

incidence The incidence of a disease measures the number or rate of new cases
of disease occurring in the population, over a specified period such
as 12 months. Annual incidence is calculated as the number of new
cases of a disease occurring in 12 months divided by the population
who were disease-free at the beginning of the period (which can be
hard to measure).

COPD, increased by nearly 35% overall in the US [19]. This rise peaked in 2002 and has
since dropped by about 5%, most likely due to the widespread campaign surrounding the
harmful health effects of smoking and the growing trend for smoking cessation.

Tab. 3.3: The 10 most common causes of death in 2008 [83]

Deaths attributed to Worldwide
Ischaemic heart disease 7.3 million (12.8%)
Cerebrovascular disease 6.2 million (10.8%)
Lower respiratory infections 3.5 million (6.1%)
COPD 3.3 million (5.8%)
Diarrhoeal diseases 2.5 million (4.3%)
HIV/AIDS 1.8 million (3.1%)
Trachea/bronchus/lung cancer 1.4 million (2.4%)
Tuberculosis 1.3 million (2.4%)
Diabetes mellitus 1.3 million (2.2%)
Road traffic accidents 1.2 million (2.1%)

In this period, 85% of the deaths (3.9 million people) were from COPD, skyrocketing it up to
the third leading cause of death in the US as of 2014. Other chronic respiratory illnesses that
saw dramatic increases included: particle-inhalation diseases, such as pneumoconiosis and
interstitial lung disease, asthma, and pulmonary sarcoidosis. [18]. Globally, Lung infections
such as pneumonia or tuberculosis (TB), lung cancer and COPD together accounted over
10 million deaths worldwide in 2008, comprising of one sixth the global total. The World
Health Organization (WHO) estimates the same four diseases accounted for one-tenth of
the disability-adjusted life-years (DALYs) lost worldwide in 2008 as shown in 3.4 [83]. The
impact of the most common respiratory diseases is illustrated in 3.5
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Tab. 3.4: The 10 most common causes of disability-adjusted life-years (DALYs) lost worldwide in
2008 [83]

DALYs lost to Worldwide
Lower respiratory infections 79 million (5.4%)
HIV/AIDS 65 million (4.4%)
Ischaemic heart disease 64 million (4.4%)
Diarrhoeal diseases 56 million (3.8%)
Cerebrovascular disease 48 million (3.3%)
Road traffic accidents 45 million (3.1%)
COPD 33 million (2.3%)
Tuberculosis 29 million (2.0%)
Diabetes mellitus 22 million (1.5%)
Trachea/bronchus/lung cancer 13 million (0.9%)

Fig. 3.5: The burden of various respiratory diseases, around 2010 [83].

Although asthma causes few deaths, it is a significant cause of disability, especially for
children and young adults [68]. Furthermore, prevalence of childhood and adult asthma
has increased in the last twenty years, and is now at its highest level. Asthma prevalence
increased from 7.3% in 2001 to 8.4% in 2010. In 2010, an estimated 25.7 million people
had asthma: 18.7 million adults aged 18 and over, and 7.0 million children aged 0–17 years
[2].
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By 2030, the WHO estimates the four major potentially fatal respiratory diseases (pneumonia,
TB, lung cancer and COPD) will account for about one in five deaths worldwide, compared
to one sixth of all deaths found globally in 2008. The magnitude is expected to remain stable
at about one-tenth of all deaths, with an increase in COPD and lung cancer deaths and a
decline in deaths from lower respiratory infections and TB.

Conclusion
Respiratory diseases are therefore likely to remain a major burden globally for decades
to come. Prevention, diagnosis, tracking and treatment of lung diseases will need to be
improved in order for the impact on longevity and quality of life of individuals, and their
economic burden on society, are to be reduced worldwide. The focus of this work is in
improving screening and tracking, although there are inherent aspects that can aid in
prevention and treatment.
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4Spirometry Background

„It’s supposed to be hard. If it were easy, everyone
would do it.

— Tom Hanks
(A League of Their Own)

4.1 Spirometers

The trajectory of most device innovation and impact is contingent on the technology available
at the time. There are perhaps four significant technology shifts that have occurred since the
20th century: mechanical, analog, digital and distributed. For example, scientific computing
was once done by mechanical slide rules which were replaced by bulky analog computers
which then became faster and smaller digital computers, which were more recently dethroned
by today’s state of the art; distributed cloud computing, which leverages hundreds of servers
around the world. This trajectory is no different for spirometry, although it somewhat lags
in comparison to computing. One of the goals of this work is to advance spirometry using
the new tools made available with the advent of distributed, data-driven computing. First, a
brief history of spirometry followed by a survey of modern devices will be discussed so the
improvements enabled by this work can be fully appreciated.

4.1.1 History

The first recorded attempt to measure lung function dates back to the second century, when
Galen, the famous Greek physician, tried to determine respiratory volume by having a
child breathe into a bladder. Science has never claimed to be glamorous. For the next few
thousand years, numerous other methods and inventions supporting basic lung function
measurements came and went. In the 1840’s John Hutchinson, an English surgeon invented
a device he called a "spirometer" which is Latin for "breathe measure". The device was about
the height of a person and was essentially a calibrated bucket inverted in the water. Lung
volume could accurately be measured by simply instructing a patient to take a deep breathe
and exhale into a tube connected to the bucket. Dr. Hutchinson also coined the term "vital
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capacity" or in other words, capacity for life, because he observed this metric was predictive
for premature mortality. He went on and pitched the device to life insurance providers as
a legitimate method for predicting life expectancy, but it never caught on. Dr. Hutchinson
did not give up easily. On a quest to give his invention credibility, Dr. Hutchinson evaluated
about 2000 patients and began to notice a strong correlation between height, age, weight,
and the volumetric vital capacity. This finding solidified the spirometer as a clinical device
and the field of pulmonary function testing began to emerge. For the next 100 years, the
design improved, but the basic functionality remained the same. A survey of these early
spirometers, including Dr. Hutchinson’s original design, is shown in Figure 4.1.

Fig. 4.1: A survey of early spirometer designs. (A) and (C) show Dr. Hutchinson’s original spirometer
design, (B) is Gardiner Brown’s "spiroscope" from The Science and Practice of Medicine,
(D) Boudin’s spirometer design from 1854, later sold in 1905 (E) the Sanborn spirometer
from 1925

In the mid 20th century, a paradigm shift occurred in the field when it was determined
that 90% of the predominant respiratory disorders (COPD, asthma, etc) were obstructive
(limited flow rate) in nature. In general, restrictive diseases can be diagnosed given total
lung volume, but obstructive diseases require metrics based on flow rate. A published report
by Stead and Wells determined the traditional water type spirometers were adequate for
measuring lung volumes but were not suitable for accurately measuring flow rates [24]. The
state of the art spirometer needed to accurately measure volume, and flow. In 1960 Jones
Medical introduced the first non-water based spirometer which was easier, cheaper, more
accurate, and more hygienic. Also around this time, Dr. Tiffeneau introduced a metric that
measured the volume of air exhaled in a given time known as forced expiratory volume
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(FEV). FEV later proved to be effective for quantifying obstructive disease severity and could
be measured with flow capable spirometers such as the one made by Johns Medical. These
innovative products and metrics marked the beginning of a new era where early detection of
pulmonary disease could be done at a standard physician’s office.

4.1.2 Modern Spirometers

Modern spirometers are generally flow based by design, directly measuring the instantaneous
exhaled flow and deriving volume and other metrics. Since there are multiple avenues for
measuring instantaneous air flow, modern spirometers can come in a few flavors. The core
technologies are defined in Table 4.1. These technologies have inherent pros and cons.
Pneumotach devices are very accurate, but extremely sensitive to temperature, humidity
and altitude and thus require daily calibration and often other onboard sensors. Velocity
based anemometers are not affected by environmental variations but are often less precise
and experience degradation over time. Ultrasonic spirometers are newer to the market
and require more precise, intricate manufacturing, but do not need regular calibration.
Hot air anemometers, while simple, are somewhat of a lost cause as they do not measure
airflow direction and require significant calibration with each use. Pneumotachs are the
most prevalent spirometers in medical clinics because they have stood the test of time, are
relatively cheap, and very accurate. Regardless of the design, the basic concept remains
fixed: during a spirometry test, a patient exhales through a flow-monitoring device (typically
a tube or mouthpiece), which measures instantaneous flow and cumulative exhaled volume.
The details of spirometry testing are covered in the upcoming Spirometry chapter.

Tab. 4.1: Modern Flow Based Spirometry Technologies

Technology Description
pneumotach measures differential pressure measure across a membrane of

known resistance based on the Venturi effect.

velocity aenometer convert airflow into measurable rotational energy using a turbine
design. Flow rate is proportional to turbine rotational velocity.

ultrasonic measures flow by leveraging the Doppler effect, essentially mea-
suring the time of flight of inaudible sound, which is sensitive to
subtle variations in the air due to variable airflow.

hot wire aenometer measures the electronic resistance through a hot wire which
varies with the temperature of the wire. When airflow passes the
wire, the temperature drops proportionally to the speed of the
flow.

Most clinical grade spirometers cost over $1000 and can be as large as a refrigerator. The
more portable variants are small enough to take home but are not designed to be portable.
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There is also a growing market of cheaper options ranging from $20 to $500. These tend to
be battery powered and much smaller, but typically only have a few simple metrics such as
peak flow or total lung volume and are slowly gaining acceptance [12, 66]. See Figure 4.2
for examples of modern portable spirometers. There are also plastic mechanical peak flow
meters less than $20, but peak flow is generally considered to be a poor indicator of lung
function and is therefore not preferred [70].

Fig. 4.2: A sampling of modern portable spiromtery products. The products shown are (A) Microlab
by Vyaire, (B) Spirodoc by Amplivox, (C) Datospir Micro by Sibelmed and (D) EasyOne by
Nddmed.

4.1.3 Portable Spirometers

Spirometers advertised as portable are often missing several vital functions required for them
to be considered truly portable in the 21st century. For example, many have no accessible
internal storage requiring patients or clinicians to record the data by hand or require a laptop
for operation. The optimal criteria for a modern portable spirometer is as follows:

• A rechargeable, long-lasting battery
• Wifi, NFC or Bluetooth upload capabilities
• Offline retrievable storage
• Web or app interface for reporting history and trends
• Fits in a purse or small bag
• Disposable or easy to clean mouthpiece
• Durable, dustproof
• Less than $500

Perhaps the easiest way to meet all of these requirements is to leverage technology that
innately meets several of them; a smartphone. There are a growing number of new, in-
novative products that utilize a smartphone for computation, display, and storage while
employing a small low powered handheld device for capturing the airflow and transmitting
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the data to the smartphone wirelessly. Using a smartphone for the heavy lifting is beneficial
in many ways. First off, it is far cheaper for the end user assuming they already own a
smartphone and costs are less for the manufacturer as they do not need to include the
display and powerful CPU components in the core product. Phone manufacturers have
already optimized their smartphones for speed, portability, and longevity, and additionally
created a vast network of documentation and support tools for developing professional grade
applications on the platform. The smartphone industry has doubled in revenue to nearly
500 billion dollars since 2013 and the tech inside is evolving even faster [25]. This powerful
foundation allows researchers and developers working on spirometry products to focus on
the core external device that interfaces with the phone, rather than all components for a
stand-alone spirometry product.

Development of an accurate, portable, sanitary, long lasting spirometer can be done sepa-
rately from the mobile app which must receive the data then process, display and upload
the results. Furthermore, the clinical certification process is focused on the accuracy of
the measurement only and therefore is only concerned with the external flow meter. Once
the meter is certified, developers have the freedom to improve the app experience and
try out different interfaces, without needing to go through the labor intense process of
re-certification. At the end of the day, everyone benefits from this iterative development
style. The users do not need to purchase new hardware when the interface is updated, they
simply download an updated application. Developers have the freedom to try new ideas and
get them into the field without the certification speed bumps. Two of the most promising
smartphone based accessory spirometry products are shown in Figure 4.3. These products
provide all of the metrics traditional spirometers measure but are also cognizant of the user’s
needs as shown in the simplistic, pleasing design of the core hardware and app. These
products are still in infancy stages of development and have a lot of ground to cover before
they can render traditional clinical products extinct. Nonetheless, they have come a long
way progressing from the academic echo chamber into the world of consumer products in
less than a decade [29].

One of the largest detractors preventing widespread adoption of these products is the need
for external hardware. For spirometry to truly be ubiquitous, it must be fully integrated
into products consumers already have, such as "smart" phones, hubs, or watches. A number
of applications (e.g., Spirodroid, mySpirometer, Spirometer Pro, Smart Peak Flow) exist in
the iPhone and Android stores, but many of them are inaccurate, hard to use (see reviews),
have only been tested on a small population and have no form of clinical validation or
medical assessment. An ideal spirometry app must be convenient, usable, regulated, and
most importantly, trusted by physicians.
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Fig. 4.3: The most promising smartphone-based portable spirometry products. (A) the Nuvoair
spirometer and app which connects to a phone via wire and can be purchased for $250. (B)
the Myspiroo is the most premium, high tech option as it is wireless and supports Bluetooth
and NFC and has many other supplemental sensors that many clinical spirometers are
missing, such as humidity sensors. It is not yet available for sale, although the app can be
downloaded.

The Ford Model T became known as the "freedom machine" of the 20th century because it
liberated Americans from the confines of their town enabling the widespread flow of products
and ideas on a national level. While the Model T revolutionized the transportation of physical
goods for the average consumer, smartphones have the same effect in the digital information
realm, but on a global level. Smartphones have become the standard in communication,
navigation, organization, and information and have brought a wave of disruption in decades-
old industries from photography to taxi cabs. It is only a matter of time before this wave
impacts the personal care and health industries. In the next section, the emerging field of
smartphone-based mobile health will be outlined to show it is indeed the future of personal
health and therefore a compelling platform for pervasive spirometry.

4.2 Mobile Health

Mobile health, sometimes referred to as mHealth, has exploded in the last few years. Apps
and wearables that monitor and track fitness, sleep and nutrition have become highly sought
after for a broad spectrum of consumers. In fact, health and fitness apps have grown by
over 300% in the last three years, according to a recent study and globally, there are over a
billion people who own smartphones [21]. This growth does not come as a surprise. The
pursuit of knowledge is baked into human nature such that anything that provides answers
to difficult questions is blindly revered. It is because of this intrinsic quality that religious
deities, search engines and more recently health tracking have mass appeal. People want
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to know they and their loved ones are going to be alright and do not want to wait for their
physician to reassure them.

Despite the massive growth and customer satisfaction, most of these products have little to
no clinical merit and tend to tackle the low hanging fruit in the health and wellness space.
For example, a number of sleep tracking products rely on motion, sound and sometimes
heart rate to predict sleep state and quality. While this is much more convenient and
comfortable than the traditional clinical approach which requires sleeping in a lab with
invasive electrodes and sensors, it has little to no clinical significance. Recent studies have
shown when dozens of similar sleep products are compared in a controlled environment,
the results differ significantly [94]. In the clinical world, this means they do not work.
For a predictive instrument to be considered clinical, it must achieve a level of accuracy
comparable to the current standard, and the predictive capabilities must demonstrate a high
level of reproducibility when utilized within the operational bounds. With the exception of
step counting and wearable based heart rate monitoring, most mHealth solutions are far
from being considered clinical as they lack the needed precision and reproducibility or have
not been thoroughly vetted through clinical trials and certifications. Nevertheless, existing
mHealth applications provide strong evidence to the massive demand for mobile-based
sensing. This demand will no doubt motivate researchers, clinicians and tech companies to
collaborate and establish the much-needed clinical utility for these applications.

4.2.1 Liberating Spirometry

Smartphone-based mHealth is the James Bond of the health industry. Agent Bond constantly
finds himself up against wealthy, powerful villains, politicians and businessmen. He con-
stantly must overcome seemingly impossible circumstances, sometimes by jumping out of
an exploding building, and other times mentally outsmarting his deceitful foes. Despite the
treacherous, emotional journey, by the end of every movie, James Bond inevitably prevails
as any other outcome would defy the expectation of the viewers. mHealth may not have to
withstand hours of torture or drive motorcycles off cliffs, but for widespread adoption, it
must navigate through a minefield of challenges set in place by clinical standards as well
as the expectations of modern consumers. This section will set the stage for a mHealth
based spirometry product by outlining the business case, potential challenges, as well as the
inherent benefits of widespread mobile spirometry.

The Customer is Always Right
The age-old phrase, "the customer is always right" highlights the parasitic relationship
between a business and a customer. For a business to survive it must pivot and adapt based
on customer demands and feedback. This is why services like next day shipping or unlimited
warranties exist. As it turns out, people are relatively simple and adhere to many of the basic
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laws of physics and nature. When presented with multiple paths, they take the path of least
resistance, optimizing for long-term survival first and instant gratification second. Unlike
the traditional consumer-business relationship, the patient-doctor relationship is symbiotic;
they need each other to survive. Because traditional spirometry has a defined outcome on
survival, many people are willing to spend the time and money on frequent checkups despite
the inconveniences. As soon as viable alternatives to visiting a clinic emerge, the patient
now has options and must be treated more like a consumer who will always take a path of
least resistance. Therefore, if mobile spirometry yields similar health outcomes to traditional
clinical based approaches, it will no doubt become the preferred option for patients.

4.2.2 Inevitable Challenges

Spirometry is unlike other typical clinical metrics such as pulse or body weight in that the
clinicians who administer tests must be highly trained in order to coach patients through
the unintuitive maneuver to ensure the results are accurate and meaningful. This necessary
insurance adds cost to the procedure and limits its use to the physician’s office. Often times
the standard 14-hour training for spirometry is inadequate or non-translatable to reality.
In a 2010 study, following the standard training clinicians were assessed for adherence
to American Thoracic Society (ATS). The study showed that after nine months clinicians
could only produce acceptable spirometry testing in 60% of their patients [10]. Why is it so
hard to get acceptable results? There are several potential sources of measurement error in
spirometry which are outlined later in Chapter 5. Many of these errors such as slow start or
variable flow are difficult for a clinician to spot because of they are a byproduct of how the
patient exhales into the instrument and are therefore not clearly visible or audible. These
errors can often be identified when analyzing the results, which suggests the process of
post-effort error identification could be automated. In fact, prior work has demonstrated
automatic spirometry error characterization is possible and comparable to human level
performance [54]. Furthermore, unless the clinician is highly experienced, coaching tends
to be dispassionate and relatively generic similar to the mandatory seatbelt instructions
provided by flight attendants. A similar outcome could be achieved with a short instructional
video. So far these insights are promising for the transition from clinical grounded spirometry,
but crucial challenges remain undressed.

In order for a physician to excel at their job, medical records must be organized, filtered
and presented in an efficient, unbiased, and consistent way. Currently, a standardized,
trusted method for uploading and storing health data does not exist, although researchers
are bringing several new ideas to the table from intuitive user interfaces to distributed
blockchain databases [45, 60]. It is therefore crucial for researchers, developers, and care
providers to collaborate in order to reach a viable solution that satisfies the needs of both
patients and physicians.
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In summary, for spirometry to be effective outside of the clinic, the following requirements
must be met:

• Automated coaching and feedback
• Automated maneuver error identification and quality assessment
• Automated upload and private storage of data
• Physician approved results and analytics

4.2.3 Benefits of Mobile Spirometry

The challenges presented above are difficult, but certainly not impossible given today’s
advances in artificial intelligence and sensing. In fact, novel solutions to these challenges
are explored later in the Methods chapter and some already existing solutions are outlined
in Related Work. The most compelling case for mobile spirometry does not come from the
business case or improvements over the traditional methods, it stems from the intrinsic
benefits that enable the use of spirometry whenever and wherever a patient desires.

Convenience
As mentioned earlier, people tend to be lazy. Services like pizza delivery, Amazon Prime
and Netflix show, in general, people are willing to pay a premium to remain in the comfort
of their home. In fact, there are few services remaining that do not have a model where
the provider comes to you. Ironically, this is how personal care used to be. Around a
century ago it was common for the local physician to come to the patient’s home for a "house
call", but this turned out difficult to scale as populations skyrocketed and families moved
to suburban neighborhoods. As a result, we have a centralized system of hospitals that is
fairly efficient given the complexity and available resources. There are, however, a few issues
with the centralized model of care. First, given the scale of the operations, patients must be
prioritized based on severity and economic status. For most people, this means they have to
wait for care, hence the term "patient". A decentralized mHealth model will help reduce the
load on hospitals by helping care providers prioritize patients in a more efficient way while
also enabling patients to get instantaneous feedback and advice, perhaps making the term
"patient" a thing of the past.

Comfort
Hospitals are stressful. The term, "white coat hypertension" describes a condition in which
blood pressure spikes purely due to the stress induced by the clinical environment. It is no
surprise over 30% of patients are affected by this form of anxiety which causes their body
to enter an involuntary fight or flight state. A 2009 study found nearly 20% of Medicare
patients who are discharged from a hospital develop an acute medical problem within the
following 30 days that necessitates another hospitalization, often unrelated to the original
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diagnosis [22]. While the readmission reason varies, it often comes down to either clinic
induced stress or an acquired infection. Either way, this is a compelling reason to offset a
portion of the traditional clinical operations with comparable mHealth counterparts.

Economic
Spirometry mHealth solutions offer significant cost savings for both the patient and care
provider. COPD alone incurs a 50 billion dollar cost burden with an estimated prevalence of
$4000 per patient per year [28]. More compelling statistics are reviewed in the Epidemiology
section of chapter 3.

Mobile spirometry will not completely abolish this cost, but it will certainly put a dent in
it. Many patients must visit the clinic multiple times per week to check their respiratory
health and ensure their treatment is working adequately. These types of visits can certainly
be outsourced to a mHealth based measurement. Insurance companies have already hopped
on the mHealth bandwagon, rewarding customers with reduced premiums for achieving a
step count above the desired threshold. Anything that reduces the risk of hospitalization
is attractive to insurance companies and mobile spirometry certainly has this potential.
Removing the requirement for expensive hardware and constant clinic visits is the most
straightforward way to make spirometry inexpensive and accessible to a broader population,
especially when the goal is to track or monitor treatment and symptoms.

Impact
In addition to cost savings and relieving patient stress and clinical burden, mobile spirometry
has the potential for a massive positive impact on health outcomes. Currently, spirometry
data is collected at a very low frequency since it requires the patient to visit a clinic or in
some cases return home for each reading. These measurements, at best, are updated on a
twice daily basis which can reveal macro trends if given enough time, but they may not be
timed to accurately capture spontaneous exacerbations. Mobile spirometry enables patients
to measure lung function at any point in the day and has the potential of exposing micro
trends that can only be revealed with sufficient contextual data points. Measurements could
be easily logged after a meal, during a hike, before bed, an hour after ingesting medication or
pre/post asthma attack. This high-resolution information can enable both the care provider
and patient to better understand the cause and effect pattern of their respiratory condition,
allowing more targeted treatment options.

Many life-threatening asthma or COPD exacerbations are not spontaneous and instead
occur following hours or days of lung degradation. Several studies have shown that daily
spirometry measurements can accurately predict impending asthmatic episodes [36, 40, 12].
Such predictive trends empower the patient allowing them to stay ahead of their condition
rather than at the mercy of it. With higher resolution data, these predictive trends will only
become more powerful and insightful. With these trends, a mobile spirometry app could
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provide insights on the collective information from several sources. For example, a local
news source may report on a wildfire which triggers the spirometry app to warn the user of
the impending degradation in air quality and provide mitigation suggestions for avoiding an
asthma attack. Providing the patient with the power to stay ahead of their condition will not
only improve their health outcome but allow them to feel in control of their condition, thus
boosting morale.

The low cost and high utility of mobile spirometry make it a tool for everybody, not just
patients with a prior respiratory condition history. This is especially true if the tool is in the
form of an app with no extra hardware, requiring little to no commitment. People trying
to quit smoking could use mobile spirometry to somewhat gamify the process by taking
several measurements throughout the weeks of recovery, using the steady improvement
in lung function as a motivator to stick with the program. Spouses with snoring partners
could encourage the use of mobile spirometry as a predictor for snoring severity and perhaps
identify the conditions necessary for minimizing the issue and preventing it from ballooning
into a more serious form of sleep apnea.

Integrating spirometry into a mobile platform allows sharing of the inherent benefits with the
connected world. Coupled with smart home sensors that measure environmental conditions
like air quality, temperature, and humidity, insightful correlations may be unveiled which
can influence positive household changes that improve health outcomes for the whole family.
Imagine a home that learns and adjusts for the ideal environmental state for each bedroom
such that respiratory health, sleep and overall comfort are optimized for. Additionally, mobile
spirometry can be used within the context of other health and fitness apps. Sleep quality
apps could recommend mobile spirometry if sleep quality is dwindling. Fitness apps could
include spirometry in addition to weight and heart rate for post workout analytics. More
data allows for more insights which in turn motivates informed treatment interventions and
positive changes to daily lifestyle.

The benefits of mobile spirometry are not limited to developed regions where smartphones
exist in the pockets of most citizens. Smartphones set up for clinical-only use can be deployed
to developing countries where traditional spirometry is nonexistent due to the cost and
required expertise. Large populations can be efficiently screened via mobile spirometry by
a handful of dedicated clinicians and individuals identified as high risk can be prioritized
for further testing and treatment. This concept can be extended to other mHealth solutions
outline later in Related Work empowering a single device to be used as a multipurpose too
for health screening.

This all being said, for these exciting use cases to be considered valuable and credible, the
spirometry measurement must be subject to a high level of scrutiny and must be validated
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using existing clinical standards, otherwise, the utility is closer to that of a game rather than
a medical device.

4.3 Conclusion

In this chapter, the history of spirometry, as well as the modern variants, are outlined. It is
clear that what is considered modern in the world of spirometry is viewed as antiquated to
other industries and general consumers. This observation is less of a stab at spirometry and
more of a reflection on the moribund medical device industry who’s technical ineptness can
be quantified by the number of floppy disks actively being used. Whether the transformation
of the medical industry is devastatingly rapid like fall of taxis or more likely, cautiously slow
like the adoption of autonomous vehicles, it is nonetheless inevitable. The demand for such
a shift is supported by advances in technology including the massive growth in the mHealth
space and ever-increasing decentralization of other similar industries. There are, however,
obvious risks exclusive to the health industry so it is imperative that modern replacements to
medical devices are rigorously tested and validated with caution. Fortunately for spirometry,
transcendence into the mHealth world is backed with over a century of comprehensive
clinical guidelines and rules. As the next chapter will show, these well-established rules
equip clinicians with a powerful swiss army knife for diagnosing respiratory conditions and
they are derived from a single signal that can be measured externally: airflow.
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5Spirometry

„We are all in the gutter, but some of us are looking at
the stars.

— Oscar Wilde

The field of astronomy exists because astronomers have measurement tools and theories that
enable a wealth of knowledge to be extracted simply from the light emitted by distant stars.
Spirometry has similar potential as it enables crucial properties of the respiratory system
to be derived from exploiting and measuring its most external signal: airflow. As a result,
spirometry is the most common lung function test and is preferred because it is relatively
non-invasive and provides a repeatable snapshot of general lung health. Many lung diseases
such as COPD, asthma, pulmonary fibrosis, and cystic fibrosis directly or indirectly alter the
speed at which air travels in or out of the respiratory system. This is exactly what spirometry
measures, which makes it a great tool for the diagnosis and monitoring of these respiratory
diseases.

Spirometry maneuvers test the limits of lung function because monitoring normal lung func-
tion often fails reveal anything until degradation is severe. The common forced expiratory
spirometry maneuver is designed to highlight the decline in function by forcing the patient
to expel the maximal volume possible with maximal effort. This allows physicians to detect
the early onset of both restrictive and obstructive diseases.

This section will cover the details of performing and interpreting a spirometry test, with a
focus on the forced expiratory maneuver. The following information is based on the clinical
standards defined by the American Thoracic Society (ATS), National Heart, Lung, and Blood
Institute (NHLBI) and other well-accepted clinical guidelines [35, 79].

5.1 Procedure

Before the testing procedure is started, standard personal information is required such as
age, weight, height, and ethnicity. This info is required to compute predicted normal lung
function parameters which are then compared to actual measured parameters to detect
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deviations from what is considered "normal" for similar populations. Next, the clinician
educates the patient on the procedure, coaches them on the maneuver and makes sure they
are prepared for the test. In the forced expiratory maneuver, the patient is instructed to
inhale as much as possible and then exhale into the spirometer as hard as possible for as
long as possible, directing all flow into the mouthpiece. If forced inspiration is also being
measured, they are instructed to take a rapid deep breath after the forced exhale. The patient
is provided a sanitary, disposable mouthpiece and in some cases is instructed to wear to nose
clip to ensure no air escapes through the nasal passages. The forced expiratory maneuver
is commonly used as it captures the limits of forced flow rate as well as the forced vital
capacity. During the forced expiratory maneuver, the spirometer monitors the flow of air
versus time and from this derives several predictive respiratory health metrics and curves.
A typical session involves three or more trials and the clinician must ensure enough trials
demonstrate reproducibility before recording the final results. The spirometry metrics and
reproducibility criteria are covered later in this chapter in Section 5.4. The results are often
available shortly after the session ends, although other pulmonary function tests may be
required before a diagnosis is given.

5.1.1 Risks

Spirometry is associated with little risk; however, forceful exhaling can increase the pressure
in your chest, abdomen, and eyes. For this reason, spirometry is discouraged or used with
caution in patients who:

• Are pregnant or a small child /infant
• Have unstable angina
• Have had a recent pneumothorax
• Have had a recent heart attack or stroke
• Have had a recent eye or abdominal surgery
• Have coughed up blood recently and the cause is not known

5.2 Results

This section will cover what metrics are included in spirometry results, derived from the flow
versus time sequence, as well as how to interpret them and diagnose lung conditions.
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5.2.1 Common Parameters

There are several metrics that can be derived from the direct flow versus time signal measured
by a spirometer. The most common metrics are shown in Table 5.1.

Tab. 5.1: Spirometry Metrics

Metric Description

Forced vital capacity FVC: The total volume of air expelled during the expi-
ration

Forced expiratory volume FEV1: The volume of air expelled in the first N seconds
of expiration. Usually FEV1, where N=1 second is used.

Forced expiratory time FET: The total time it takes to expire FVC

Peak expiratory flow PEF: Maximum expiratory flow rate reached during the
test

FEV1/FVC Ratio The ratio of the FEV1 to the FVC, indicates percent of
lung capacity expelled in the first second.

Percent predicted ratio The ratio of the measured metric to the "normal" pre-
dicted value

5.2.2 Interpretation

Using the metrics outlined in the last section, coupled with the wealth of prior statistical
and pathological respiratory health information, physicians can compile a comprehensive
assessment of lung function from a single spirometry session. Spirometry results usually
reveal one of four main patterns:

• Normal
• Obstructive
• Restrictive
• Hybrid obstructive/restrictive

Each of the four outcomes is described as followed [7]:

Normal
Normal readings vary depending on age, size, sex and ethnicity as these variables affect
the size and age of the lungs. These patient-specific variables have a significant effect
on predicted lung health as illustrated in Figure 5.1. Usually, a standardized reference
table or algorithm is used with these personal variables to retrieve the predicted normal
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readings [20]. Prior health statistics show that lung health deteriorates linearly with age,
and intuitively, lung size increases linearly with height. Gender and ethnicity have been
shown to affect chest and lung size independently of height. Weight is typically proportional
to height and therefore somewhat redundant, but in cases such as obesity, the weight is no
longer correlated to height and therefore effects lung function.

Fig. 5.1: Shows the age dependence for predicted FEV1 and the relationship for different genders
and ethnicities

The FEV1/FVC ratio is a useful metric for measuring normalcy as it is independent of
a patient’s lung size. Prior research has found healthy patients can typically achieve an
FEV1/FVC ratio of 0.7 or higher, which means at least 70% of the vital capacity was exhaled
in the first explosive second of expiration.

A healthy individual’s lung function measures are generally at least 80% of the values
predicted based on their age, height, and gender [42]. Abnormal values of FEV1% are
expressed as a percent of the predicted value and are typically categorized as follows [61]:

• Healthy: 80% or above
• Mild to Moderate Lung Dysfunction: 60-79%
• Moderate Lung Dysfunction: 40-59%
• Severe Lung Dysfunction: below 40%
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There are exceptions to these rules of thumb, so it is generally preferred to completely
rule out the other three abnormal patterns first in order to diagnose normality. Historical
patient information, when available, should be used in place of predicted values as it is more
applicable. For example, if a patient historically achieved 120% predicted FEV1 and a year
later is measured at 100% predicted FEV1, there could be a serious issue in place despite
an apparent classification of "healthy" based on calculated predicted values. However, since
historical lung function data for patients are rarely available, predicted values are typically
relied on.

Obstructive

As covered in Chapter 3, obstructive diseases result in narrowed airways and are usually
caused by asthma and COPD. Narrowed airways hardly change the total lung volume, but
have an observable effect on the rate at which air flows out of the lungs. Therefore, an
obstructive pattern is characterized by a normal or slightly reduced FVC and a significantly
reduced FEV1 when compared to predicted normal values. This also results in a reduced
FEV1/FVC ratio.

For example, if a patient has an FVC above 80%, but an FEV1 below 80% the predicted value,
then they likely have some degree of obstruction. It is also common to additionally check
FEV1/FVC ratio, which if below 0.7, is an indicator of marked narrowing of the airways and
obstructed airflow.

Restrictive

Restrictive patterns are usually caused by conditions that affect the lung tissue itself or affect
the capacity of the lungs to expand and hold a normal amount of air. These conditions
are typically a result of scarring or an external force preventing normal lung expansion.
As a result, restriction is highly characterized by a reduction in FVC. The FEV1 is also
proportionally reduced, so the FEV1/FVC ratio often remains normal. Therefore, a patient
likely has restriction if the FVC is below 80% and the characteristics of obstruction are not
present.

Hybrid

It is rarely the case in pathology that a condition or disease is clearly defined as black and
white. Subsequently, the threshold-based analysis described above does not always provide a
clearcut, concrete diagnosis. This can happen when a patient has mixed conditions, such as
asthma plus another lung disorder. Additionally, there are lung conditions like cystic fibrosis
that manifest with both obstructive and restrictive patterns where there is mucus buildup in
the airways which results in narrowed airways, and restrictive scaring to the lung tissue.
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In these cases, relying on the spirometry metrics may not paint the entire picture needed for
a complete diagnosis. As a result, different tests may be used to provide additional insight to
bring the diagnosis more clearly into focus.

5.2.3 Spirometry Curves

While the individual metrics introduced above provide a useful framework for assessing lung
function in the majority of cases, they are merely a summary of the information embedded
in the original airflow versus time curve and lack the information necessary for identifying
errors in a trial or inspecting repeatability between trials. For this reason, it is common
practice to also interpret flow versus time (FT) dynamics and the other derived curves
described in Table 5.2. Most of the relevant information can be extracted from the flow
versus volume (FV) curve, so it will be the focus of this section.

Tab. 5.2: Spirometry Curves

Curve Description

Flow vs Time (FT) The direct flow versus time as measured by the spirometer, typi-
cally not used as the other curves provide more relevant infor-
mation and are preferred by physicians

Volume vs Time (VT) The cumulative volume of air exhaled as a function of time.
Computed by integrating the FT curve

Flow vs Volume (FV) The result of plotting flow as a function of cumulative volume
instead of time. Clearly shows the relationship of flow and
volume in one plot

Normal VT and FV curves with the common metrics indicated are shown in Figures5.2. At
the start of the test, both flow and volume are equal to zero. After the maneuver is started,
the curve rapidly mounts to a peak, then descends at a rate proportional to the airflow speed.
A normal, non-pathological FV curve descends in a straight or a convex line from top (PEF)
to bottom (FVC) referred to as the expiratory curve. Similarly, in the cumulative VT curve,
the volume rapidly increases during the explosive phase then steadily flattens as the final
20% of the vital capacity is exhaled and the FVC is reached.

Like spirometry metrics, curves can be used to detect obstructive and restrictive patterns.
Figure 5.3 shows common examples of FV curve profiles compared to normal. Obstructive
curves are characterized by a concave or "scooped" shape following the PEF in the FV curves
while restrictive FV curves typically have a similar shape to their normal counterparts, but
with a dwarfed scale volume-wise. Moreover, several other specific or hybrid conditions can
also be discovered from the shape of the curves.
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Fig. 5.2: Standard volume vs time and flow vs volume curves along with the commonly derived
metrics, defined in 5.1

Fig. 5.3: Common conditions represented by their FV curve compared to the baseline normal curve

Curve Physiology

It can be useful to understand what is going on inside of the respiratory system during a
forced expiratory maneuver and how it translates to the resulting FV curve.

The start of the maneuver is abrupt and explosive, quickly relinquishing the majority of
the volume in less than a second until the PEF is reached. In this period, the large airways
conduct the majority of the airflow and the shape of this region, as well as the magnitude of
the PEF, are vastly dependent on the voluntary effort and muscular strength of the patient.
As a result, PEF is considered effort-dependent and a poor indication of lung health since it
is more based off of the patient’s technique and strength.

The most import component of the FV curve is the decay from the PEF to FVC. This stage
is considered effort-independent as it remains constant regardless of the patient’s effort or
strength. By this point, the majority of the air has expelled through the large airways and
what remains must escape through the small airways. These small airways are the key to
diagnosing obstructive conditions as they are often the most vulnerable airways in terms of
obstruction.
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The remaining region of interest is the final point on an FV chart or the max value of the VT
curve. This point occurs when the flow has returned to zero or the volume has reached the
FVC limit. The time at which this occurs is referred to as the forced expiratory time (FET)
and signifies the end of the forced exhale. With or without obstruction, this point should
be relatively constant as all of the air eventually is exhaled (except for trapped residual air
which is covered in 5.3). In the case of restriction, this point tends towards zero as the
severity of restriction rises.

5.2.4 Diagnosis Decision Tree

The diagnosis decision tree is shown in Figure 5.4 and adequately summarizes the clinical
diagnostic process outlined in this section. Note that for a confirmed diagnosis in many cases,
a total lung capacity (TLC) test, which is covered in the next section, is required. The TLC
assessment cannot be determined with a spirometer. Nevertheless, a spirometer provides a
wealth of preliminary knowledge, plus it is a simple and non-invasive tool. There are many
variations of this tree as the communities have not seemed to converge on a single set of
rules.

Fig. 5.4: A decision tree used for interpreting spirometry results and motivating follow up tests
requried for full diagnosis [7]
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5.3 Other Pulmonary Functions Tests

A spirometer can be used for tests other than what has been outlined so far. These additional
tests are often employed to provide extra context so a complete diagnosis can be reached.
Despite these additional tests, there are fundamental limits to what spirometry can measure
before other, less convenient, instrumentation are utilized. The following are examples of
additional tests that can be performed with a spirometer:

Reversibility Testing (bronchodilator)
Spirometry can also help to assess if treatment, such as inhalers, can effectively open up the
airways. Theoretically, spirometry readings will improve if the narrowed airways become
wider after administration of the medication. This process is called reversibility. Reversibility
can be employed to quantify the severity of obstruction and is also useful in cases where the
diagnosis of the lung condition is not clear. A spirometry reversibility test usually follows the
following steps:

A baseline standard spirometry session is performed, followed by the use of an inhaled fast-
acting bronchodilator (often Salbutamol). After roughly fifteen minutes, a repeat spirometry
session is performed and referred to as the post-bronchodilator result. In the case of asthma,
which is considered highly reversible, a "significant" improvement in FEV1 will typically
be seen after administering the bronchodilator. If FEV1 does not increase "significantly"
following the bronchodilator, the obstruction is more likely to be caused by another pathology,
such as COPD and other tests will be necessary to make a definite diagnosis. The ATS defines
a "significant rise" as a post-bronchodilator rise of at least 12% and by 200mL [61].

It is typical for COPD to be graded according to severity, in terms of the FEV1 measurement
after a bronchodilator medication has been given to open up the airways. As a guide, the
following post-bronchodilator values help to diagnose COPD and its severity (expressed as a
percent of predicted value post-bronchodilator):

• Mild COPD: FEV1 is above 80%
• Moderate COPD: FEV1 is 50-79%
• Severe COPD: FEV1 is 30-49%
• Very severe COPD: FEV1 below 30%

5.3.1 Spiromtery Limitations

Spirometry is adequate for benchmarking external airflow which provides useful insight into
the airway functionality and lung capacity. However, even if the patient has expired fully,
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there is always some air left in the lungs, regardless of the exhale force. This is the Residual
Volume (RV) and is usually about 20-25% of the FVC. The total Lung Capacity (TLC) is
expressed in Equation 5.1:

TLC = FV C +RV (5.1)

Unfortunately, it is impossible to measure the RV with a spirometer as it is not physically
exhaled from the body. For this, a less convenient gas dilution or body plethysmography
test must be performed. Furthermore, spirometry doesn’t sufficiently evaluate intrinsic lung
properties such as diffusion efficiency or capillary performance. In these scenarios, more
sophisticated methods such as those shown in Table 5.3 must be employed. Most of these
tests are associated with low risk and designed to be done in a standard physician’s office,
however, they are far less convenient and more expensive compared to spirometry.

Tab. 5.3: Pulmonary Function Tests

Test Description

Spirometry Measures the rate of air flow and vital capacity. Requires multiple
breaths, with regular and maximal effort.

Body plethysmography Measures the total amount of air the lungs can hold using an
airtight booth called a plethysmograph with accurate flow and
volume logging.

Lung diffusion Assesses how well oxygen gets into the blood from the inhaled
air via diffusion. Requires several minutes of causal periodic
breathing. Typically, the diffusing capacity for carbon monoxide
(DLCO) is measured.

Gas dilution A person breathes from a container containing a known amount
of a gas. The test measures how the concentration of the gases
in the container changes.

Pulse oximetry Estimates blood oxygen levels. Requires placement of a probe on
a finger or another skin surface such such as an ear.

Arterial blood gas Directly measure the levels of gases, such as oxygen and carbon
dioxide in blood. These tests are usually performed in a hospital.
Typically, blood is typically taken from the femoral artery via
needle.
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5.4 Quality Control

To reiterate, the main appeal of spirometry is the noninvasive, quick and easy nature of the
procedure. However, there is a consequence to this simplicity. The correct technique, posture,
and mindset of the patient are all important variables to the success of the procedure and
the slightest mistake can invalidate a spirometry maneuver. Coaching helps standardize the
process, but simply explaining the procedure does not guarantee compliance or repeatability.
As a result, well defined, patient independent, quality control methods have become a stan-
dard in spirometry. These include post-trial error screening and session-based reproducibility
rules.

5.4.1 Errors

Recall, that a correct spirometry testing procedure is characterized by [61]:

• Beginning the maneuver with maximal blast effort
• Applying maximum effort throughout the maneuver
• Keeping a tight seal on the spirometer mouthpiece to avoid leaks
• Avoiding variability in output flow, such as breaks
• Completing the maneuver in one continuous breath

Not only are these rules hard for a patient to remember and consistently implement, they
are also very difficult for a clinician to enforce subjectively. Fortunately, many of the most
common errors in the above rules can be identified via FV or VT curve data and reproducibility
rules, provided the clinician is adequately trained. The following errors in Table 5.4 are the
most common and critical that can occur in spirometry testing. For further reference, the
graphic illustrations provided by the ATS and displayed in Figure 5.5, visually show examples
of common errors, how they manifest in spirometry curves, and how to prevent them.

5.4.2 Reproducibility

In addition to checking for trial errors, it is also imperative to verify the independent trials in
the session have enough similarity to be considered clinically significant. Furthermore, since
only one set of metrics gets recorded for per session, criteria must be established for selecting
or computing the most representative trial in the session. For a session to be considered
reproducible, the ATS suggests that at least three trials demonstrate reproducibility with
each other. If this is true, the "best" effort is recorded, where "best" is the effort that achieves
the largest FEV1. If a session is found to fail the reproducibility requirements, it is either
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Tab. 5.4: Common Spirometry Errors

Error Description

Cough Occurs when a patient coughs into the flow tube, the aberration
caused is very prominent and easily detectable in the FV curve.
Usually identified by a second, superfluous, peak inflow.

Slow Start Occurs when the patient does not start with the maximum blast
effort, resulting in a gradual rather than steep slope to the PEF.
It is defined as occurring when the PEF occurs at a volume
larger than 0.7 L, [cite David P. Johns et al. “National survey of
spirometer]

Early Termination Occurs when a patient ceases the airflow before the entire breath
is exhaled. This appears as a discontinuous drop in flow to zero.
It should be suspected if the FET is less than six seconds.

repeated, assuming the patient has the stamina, or it is put off for another time. The ATS
asserts two spirometry tests are reproducible if [61]:

• The difference in value for the respective FEV1 values is less than 5% or less than
200mL

• The difference in value for the respective FVC values is less than 5% or less than 200mL
• The PEF variation is less than 10%

5.5 Conclusion

This chapter provided a specific overview of how clinicians utilize spirometers and their
results to diagnose obstructive and restrictive respiratory diseases. While many of these
guidelines may only be relevant to a physician or care provider, it is important to acknowledge
the inherent procedural, rule-based nature of these guidelines, which are well poised for
automation. From diagnosis to quality control, much of spirometry can be expressed in an
algorithmic form. For these rules to be effective it is vital that the source signal (airflow) is
measured in a precise, robust manner. Later chapters in this work will explore alternative
modalities for measuring the coveted airflow signal using nothing other than a smartphone.
The coupling of a novel measurement technique with the algorithmic decision rules outlined
in this chapter has the potential to lead to an influential mHealth spirometry application that
will significantly enhance spirometry making it available and accessible to everyone.
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Fig. 5.5: Handout for spirometry reproducibility and error guidelines
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5.6 Afterword

This chapter closes the captivating or to some, slumberous overview of the respiratory system
and spirometry function testing. These preliminary chapters aim to serve as background and
motivation for the main, technical contribution of this work which will be the topic of the
remaining chapters. While it may have been gratuitous to start the discussion with events
that occurred over 300 million years ago, the aim is to intuitively cover the functionality of
the respiratory system so the anatomy, physiology and associated disease states are clear to a
general audience. It is difficult to appreciate, let alone comprehend the utility of spirometry
without a solid foundation of normal respiratory function. As mentioned, impactful solutions
will only arise through multidisciplinary collaboration and a shared narrative, but first, the
problem must be fully understood, and for a spirometry solution to be impactful it must be
accurate, convenient and affordable.
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6Sound Background

„Sound is the vocabulary of nature.

— Pierre Schaeffer
French electronic sound pioneer

The majority of this work relies on capturing and processing sound in a way that maximizes
extractable information. While a plethora of microphone technologies and processing
techniques exist, the focus of this section will be limited to what can feasibly be done on a
modern smartphone with no additional hardware. The chapter will begin by outlining the
electro-mechanical process of converting sound pressure waves into a digital signal, then
unfold into a discussion on how specific transformations can be applied to digitized sound to
obtain additional context via feature extraction.

6.1 Microphones

Microphones, a type of sound transducer, have been around for over a century and convert
acoustical energy in the form of sound pressure waves into electrical energy in the form
of an audio sequence or signal. Many types and arrangements of microphones exist for
different purposes. Up until the 1990’s microphones were typically wired and handheld,
but with the insurgence of digital hearing aids and mobile phones, a competitive market
developed around the design of tiny low powered microphones. The current standard for
these micro-sized microphones is known as a MEMS microphone and by 2010 they were
utilized in the most popular smartphones, solidifying their seat in the world of sensors. In
fact, according to IHS Inc, more than four billion MEMS microphones will ship in 2016 and
will reach almost six billion units annually by 2019 [3].

6.1.1 MEMS Microphone

In 1986, the Defense Advanced Research Projects Agency (DARPA) published a proposal
which first introduced the term "microelectromechanical systems", or MEMS for short [55].
The name, MEMS, is somewhat intuitive as they represent a class of electronics that integrate
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mechanical and electrical components and have feature sizes ranging from micrometers to
millimeters. Their small size and scalable manufacturability make it possible to integrate
them into a wide range of systems, and smartphone manufactures do exactly that. Nearly all
sensors and display components in modern phones involve some sort of MEMS technology.

In the case of smartphone microphones, MEMS technology is preferred for many reasons;
they are smaller, cheaper, less power-hungry, and easier to fabricate and integrate into
semiconductor packages. Furthermore, they have a high signal to noise ratio (SNR), resulting
in cleaner audio capture at greater distances. Many advances in MEMS microphones have
been tailored for smartphone usage as they are by far the biggest market. For example, they
have a low power mode feature which allows them to always be listening for "Ok Google"
without consuming significant battery power. In addition, modern Bluetooth headsets,
laptops, smart-home assistants, cars and hearing aids also leverage MEMS microphones.
Some technologies employ arrays of them and use a processing technique called beamforming
to spatially locate the source of the sound.

However, MEMS components do have limitations. Because of the speech dominated use,
MEMS microphones are optimized for speech clarity rather than reproducing original sounds
as our ears hear them. As a result, they have poor sensitivity at low frequencies below 100Hz
due to physical ventilation constraints and are hypersensitive between about 4-6kHz due to
the Helmholtz resonance (the effect that makes empty bottles whistle in the wind). This is
why MEMS microphone manufactures typically only specify the frequency response between
100Hz and 10kHz rather than the human range of 20Hz to 20kHz.

MEMS Design
The acoustic transducer fundamentals of a MEMS microphone are nothing new. They are
basically a DC-biased capacitor, where movement of a membrane used by audio pressure
changes the voltage over a capacitor plate or plates. This change in voltage represents the
audio signal which is then digitized via neighboring Application-Specific Integrated Circuit
(ASIC). Leveraging changing capacitance to measure sound pressure is certainly not a new
technique as it was first shown in the invention of the condenser microphone by E.C. Wente
of Western Electric in 1916 [39].

The design of a MEMS microphone relies on constructing a variable silicon capacitor and
is shown in Figure A of 6.1. The capacitor consists of two silicon plates. One plate is fixed
(the green plate) while the other one is a movable membrane (grey). External sound enters
though the perforated holes of the solid fixed plate, striking the membrane and modulating
the air gap comprised between the two conductive plates, thus changing the capacitance
between the plates. A ventilation hole, allows the air compressed in the back chamber to
flow out and consequently allows the membrane to move back. Aside from allowing the
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membrane to vibrate, the internal chamber is also designed with specific acoustic resonance
properties which characterize the frequency response and SNR [85]. In a typical smartphone,
the MEMS microphone is housed in an intricate, acoustically engineered cavity between
the printed circuit board (PCB) substrate and the exterior phone casing, usually along the
bottom edge. To protect the membrane from dust and liquids, the ASIC, armored with
an epoxy like "glob top", is placed beneath the pinhole inlets with the microphone placed
adjacent as shown in Figure B of 6.1.

Fig. 6.1: A typical MEMS microphone assembly where (A) is the microphone itself and (B) is a
common design pattern utilizing a MEMS microphone in a smartphone style enclosure.

The design of MEMS microphone and other membrane-based microphones is clearly bor-
rowed from the superior engineered design of the human ear. In the ear, the eardrum
(tympanic membrane) serves as the membrane and its movement is similarly transduced
into an electromechanical signal by the cochlea. Rather than being processed by an ASIC,
the brain receives the sound signal via nerve impulses.

Conclusion
At its core, a MEMS sensor is a variable capacitor that measures capacitance change between
a rigid fixed plate and a movable membrane plate caused by the incoming wave of the
sound. These tiny, sub-millimeter microphones achieve sound quality adequate for speech
recognition and conversation but often lack in other domains. Their saving grace is low
power whilst high SNR operation and cheap, scalable manufacturing process. Additionally,
they are easy to integrate with other components to form powerful sensing packages such as
those present in modern smartphones.

6.2 Digital Sound Processing

Once the audio signal is in the digital domain, its true potential can be unleashed.

The world is filled with signals: images from remote space probes, sonar echoes, seismic
vibrations, voltages generated by the brain, and countless other applications. Digital Signal
Processing (DSP) is the science of using computers to understand these signals. Some of
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the common applications of DSP include speech recognition, image enhancement, data
compression, filtering, neural networks, and much more. DSP is one of the most powerful
technologies to date and continues to prove its power in new applications. This section will
cover the process of going from analog to digital and the common DSP techniques applied to
digital sound. These techniques are crucial in enabling the audio based machine learning
solutions presented in this work.

6.2.1 Analog to Digital Conversion

In order to apply DSP to a problem, one must first obtain a digital signal. In the case of
audio, this is either done with digital synthesis, i.e., generating a digital sound on a computer,
or through digitizing an analog audio signal from perhaps a microphone. The process of
digitization is typically done with an analog to digital converter (ADC) and will be the subject
of this section.

Most signals in nature are continuous along a particular dimension: light intensity that
changes with distance; voltage that varies over time; a chemical reaction rate that depends
on temperature, etc. ADCs are devices engineered to allow digital computers to interact
with these everyday signals. Digital information differs from its continuous counterpart in
three respects: it is sampled, quantized, and often encoded. These steps are outlined in the
subsections below and illustrated in Figure 6.2. The material in this section is summarized
from the excellent DSP Guide website [78]. While sampling and quantization are fairly
general, the encoding step varies in different applications. In the majority of current digital
audio systems (computers, compact discs, digital telephony etc.), multi-bit Pulse Code
Modulation (PCM) is used to represent sound signal in the digital world as it permits
filtering, mixing and other potential manipulations to be easily applied.

Sampling
Sampling is the reduction of a continuous (analog) signal to a discrete (digital) signal. It
is also called digitization of time. Sampling results in a sequence of samples, which are
discrete in time but still continuous in amplitude. The sampling rate or fs is defined as the
number of samples taken per second. A higher sampling rate results in more data points in
the sequence and hence a higher resolution signal, but it requires more storage and is slower
to process. Conversely, a lower sample rate results in fewer samples to describe the same
analog signal and therefore results in a lower quality digital representation. The sampling
rate places a fundamental limit on the type of information that can be accurately represented
in the digital realm. Namely, the Nyquist theorem says that sampling rate should be double
the frequency of the highest frequency signal. Any frequencies outside of the Nyquist limit
are incorrectly represented in the digital signal as a form of distortion known as aliasing. It is
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Fig. 6.2: Standard ADC pipeline from analog to digital

standard practice for ADCs to employ an anti-aliasing filter to prevent aliasing by removing
frequencies beyond the Nyquist limit before sampling.

Adult humans can hear frequencies in the range of 20Hz to 20kHz, some newborns can
hear up to 22kHz and dogs can hear up to 45kHz. Thus, in order to preserve the quality of
sound sensed by the human ear, the Nyquist theorem dictates that a sampling rate of roughly
40kHz required, which explains why CDs and mp3 digital music files use a sampling rate of
44.1kHz.

In summary, fs is the only parameter that matters in sampling and the Nyquist limit places
a bound on the minimum fs that can be used in order to prevent irreversible aliasing
distortion.

Quantization
Quantization is the process of mapping a large set of input values to a smaller, countable set
by rounding values to a fixed level precision. After quantization, the signal is discrete in both
time and amplitude. The process that performs quantization is called a quantizer and the
round-off error introduced by quantization is referred to as quantization error. The number
of available discrete amplitude levels determines quantization error which depends on the
number of bits used to represent each sample. If more bits are used to quantize a signal, its
quality is improved, similar to using a higher sampling rate. For instance, an 8-bit sample
will have 28 = 256 discrete levels. In terms of SNR in the digtal realm, each additional bit
increases the SNR by 6dB as represented in Equation 6.1, where N is the number of bits
used to represent a sample. Common PCM samples are of 8, 16, 20 and 24 bits wide:

SNR (dB) = 6.02N + 1.76 (6.1)
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If the amplitude of a sample extends beyond the max limit that can be expressed by the
quantization scale, it is clipped to the max value. A similar clipping effect can occur in the
analog domain if a signal has more power than its amplifier can supply. In the majority of
cases, clipping is unrecoverable and therefore a considered a form of distortion. An example
of clipping is shown in Figure 6.3. To conclude, the main quantization parameter, N bits per

Fig. 6.3: An example showing the distortion due to clipping sinewave

sample, affects the SNR of the digitized signal and therefore affects the quality. Given an
analog signal, the sampling process slices the signal along the time axis, and quantization
dices it along the amplitude axis.

Encoding

The encoding process translates the sampled, quantized signal into 1s and 0s and embedded
header information which gives the computer architecture instructions, such as fs , that
allow it to read the data. Usually, the encoding is defined by the computing architecture so it
generally doesn’t need to be considered.

Once an analog signal has been encoded into a digital format at the cost of unrecoverable
quality loss, it is now ready for DSP. So far the focus has been representing an analog signal
in a digital domain, but now the focus will shift towards various techniques that can be
applied to a digital sound signal in order to extract useful information.

Conclusion

This chapter offers a high-level background of MEMs microphones and digital signal pro-
cessing with a focus on sound. Next, time, frequency and time-frequency representations of
sound are covered, as well as some of the features and insights that can be gathered from
different representations.
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6.2.2 Time Domain Processing

Traditionally, sound is defined as a variation in pressure waves and density caused by the
propagation of the waves through a medium. Sound waves, being variation in air pressure
over time, may be represented as a varying voltage or a stream of data over time. This is a
time domain representation of sound. The amplitude represents the molecular displacement
caused by the changes in air pressure which oscillate resulting in positive and negative
fluctuations. In the digital domain, the amplitude is typically represented as a value between
1 and -1 which represent maximum positive and negative amplitudes of the signal, and 0
represents zero amplitude. An example of a spirometry exhalation using this characterization
is displayed in Figure A of 6.4.

The time domain contains useful information despite its simplicity. For example, it is clear
from Figure A of 6.4 that exhalation begins around t = 0.5 seconds and decays to near
silence by t = 3.5 seconds. There are other ways to represent time domain waveforms.
Figure B of 6.4 shows the amplitude envelope, which summarizes the change in amplitude
over time in a more concise form. Amplitude can be directly interpreted from the waveform,
but there is not enough information to adequately discern the type of sound creating the
loudness. Without knowing the context of Figure 6.4, it could very well be a car horn or
firework or any explosive sound with a decay. It is also common to represent amplitude with
the decibel (dB) scale which is logarithmic and closer to the way the human ear perceives
amplitude.

Examples of time domain processing include adjusting the amplitude, trimming to a specific
time range, reversing, and changing the speed (which changes the pitch too). Basically
anything that can be done on a basic cassette tape. The main descriptive features that can be
easily extracted from the time domain are based on amplitude peak counting, timing such
as overall duration, or duration above a particular amplitude. In most cases the amplitude
envelope is sufficient for basic feature extraction. The envelope can also be smoothed,
downsampled or fit to polynomial coefficients if the desire is to represent the envelope with a
smaller set of numbers. As shown in the following sections, useful frequency based features
can be extracted by converting from this domain into the frequency domain.

6.2.3 Frequency Domain Processing

The frequency domain refers to the sound representation with respect to frequency rather than
time. Instead of illustrating amplitude versus time, a frequency domain representation shows
how much of the signal lies within each given frequency band over a range of frequencies.
The frequency information can be computed digitally using the discrete Fourier transform
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Fig. 6.4: A) An untrimmed sound recording of spirometry exhale, time in seconds. B) The amplitude
envelope of the sound

(DFT) of the time domain signal and transformed back to the time domain with the inverse
DFT. An example of a frequency envelope, known as a power spectral density (PSD) plot, is
displayed in Figure 6.5. It is clearly a much different representation of sound and reveals
that much of the exhale sound is low frequency below 1 kHz. There is a second peak around
4kHz which may describe a wheezing sound present during exhalation. Many sounds can be
classified purely via frequency content. For example speech from an adult male, female and
child can be distinguished by this representation.

The most common frequency processing usually involves converting to the frequency domain,
filtering the frequency content, and converting the transformed signal back to the time
domain. Frequency-based filtering can be done this way. Frequency domain audio features
usually summarize the frequency information by grouping it into large frequency buckets,
such as low, medium and high, and then associating a magnitude for each one.

6.2.4 Time-Frequency Processing

Both time and frequency domains involve a magnitude value in the y axis that varies along a
single dimension of either time or frequency. It is possible to combine the information in
both of these domains into what is referred to as a time-frequency (TF) representation of
the sound. Other names and variations of this format include short time Fourier transform
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Fig. 6.5: A Power Spectral Density (PSD) plot of a spirometry exhale, which conveys the magnitude
of frequencies within a specific range

(STFT), spectrogram and sonogram. A common format is a graph with two geometric
dimensions: time and frequency; and a third dimension indicating the amplitude of a
particular frequency at a particular time. This third dimension is typically represented by the
intensity or color of each point in the image.

There are many variations of format which often depend on the discipline. For this work,
time will be the x axis and frequency, the y. The frequency and magnitude axes can be either
linear or logarithmic, depending on the primary purpose of the graph. The frequency axis
has even more complex non-linear representations such as the Mel-frequency cepstrum scale,
which scales the frequency axis similar to how human ears perceive; sounds between 100
and 4kHz are stretched out and other less audible bands are compressed. The third intensity
dimension can also be scaled and represented in dB or other magnitude scales. Another form
of extreme scaling is binary thresholding where any intensities below a limit are rendered
white and all above black. This helps pick regions of interest from surrounding noise. Similar
thresholding can be done to expose certain pitches or harmonics in the frequency axis.
Examples of linear, Mel and threshold scaling are shown in Figure 6.6.

Most of the processing and feature extraction performed in the time or frequency domain
can also be done in the TF domain, although some, such as amplitude peak counting may not
be as obvious or are much easier to do in a simpler domain. Both trimming and filtering can
be applied to the sound by cropping the x and y axis, respectively. Since frequency and time
are both represented, this domain can be utilized for pitch tracking as well. Furthermore,
there are mathematical transforms to go back to a time or frequency only domain, although
some information may be lost.

The TF domain is ideal for classifying different types of sounds as most sound types have a
time-varying component such as amplitude decay in addition to a pitch varying component.
Figure 6.7 shows how different qualities of sounds manifest in the spectrogram. Notice how
some sounds are classified from the time-varying component, such as the gunshot, while
others are obvious from the frequency content such as the dog bark. Finally, some sounds,
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Fig. 6.6: Various time-frequency spectrograms with different scaling. In A) the frequency axis is
scaled linearly B) employs log-Mel frequency scaling and C) applies a magnitude threshold
to a log-scaled frequency axis

such as the siren require both the time and frequency variations to easily recognize. This
work relies heavily on spectrograms and the Mel-scaling is the representation of choice for
both classifying a spirometry maneuver as legitimate or not, as well as regressing to the flow
versus time curve given the TF representation. This work will later show the spectrogram,
along with other manually extracted features from the sound, inherently have a massive
amount of predicted power when when used in the context of spirometry, especially if
machine learning is leveraged to wrangle all of the features in an optimal fashion.
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Fig. 6.7: Different sound classes from the Urban sound dataset plotted as a linear spectrogram,
where time (seconds) is the x axis and frequency (Hz), the y axis.
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7Airflow Physics

Since the crux of this thesis relies on the ability to sense airflow via sound, this section
will cover prior work in this area from a general sense, and also within the context of
spirometry.

Understanding the relationship between sound and airflow is a common challenge in many
fields. Perhaps the first researchers that come to mind given the topic of airflow sensing
are atmospheric scientists. They are faced with the difficult task of understanding weather
patterns which includes the need to measure extreme hurricane winds in an accurate manner.
Interestingly, there are many other disciplines interested in understanding the effects of wind,
from high-end tent manufacturers to military projectile firms. Thanks to the multidisciplinary
longing to understand airflow, there is a massive amount of prior research on the topic.
While much if it is far too application specific to extrapolate to human-powered airflow,
some of it is quite generalizable to a model that pairs well with the physical design and
functionality of a smartphone MEMS microphone. Before going into the various physical
models that fit the scope of this problem, it is important to understand the limits of human
physiology.

7.1 Physical Constraints

There is a speed limit that restricts the maximum velocity of air particles exhaled by a human.
While there is little research directed at this theoretical question, empirical evidence gathered
with high-speed motion camera suggests this limit is roughly 5 m/s in free air, which drops
off beyond about 3 ft from the source [81]. This research was focused on coughs and sneezes,
which is certainly on the extreme side of airflow output. Forced exhale is somewhere between
an impulsive cough and a constant flow, so while the peak velocity isn’t expected to rise, the
propagation distance for a forced exhale should be greater since far more volume is being
moved at a similar speed and thus will travel further before dispersing.

Additional insight can be obtained analyzing the PEF of thousands of patients or using the
predicted value given patient parameters such as height. PEF is measured as a flow rate
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rather than velocity, Equation 7.1 shows the conversion between flow rate and velocity when
the radius of the pipe (airway-opening) is known.

flow rate = πr2v (7.1)

Since we are interested in the maximum limit, a peak flow of 11.2 L/s will be used which
is 10% higher than the maximum predicted PEF value for a 6 foot 5-inch 35-year-old male.
This also aligns with the findings in the upcoming Dataset chapter in which the maximum
recorded PEF of 40 thousand trials is 11.32 L/s. In the case of spirometry, the pipe radius
is designed to be the radius of the mouth in order to capture the flow from the mouth "as
is". The guidelines for spirometer testing suggest a breathing technique similar to fogging
up a mirror via breathing, so it is fair to assume a pipe radius of approximately 0.75 inches
plus or minus a 0.25 inches. Using r = 0.75 and flow rate = 11.2, the max velocity, is found
to be v = 9.82 m/s, versus the 5 m/s limit found in free air. Note, this number is highly
dependent on the mouth radius which is difficult to control when the spirometry tube is
omitted. This insight reveals that in order to approximate spirometry flow via airflow in free
air, some sort of mathematical transform must be developed to convert free airflow into the
traditional pipe airflow seen in spirometry. This transform will be depended on the mouth
radius r and the mouth to phone distance x. In other words, a transform needs to map
airflow at the microphone membrane to the flow measured at the mouth. The application in
this work assumes the smartphone microphone will be pointed down, normal to the airflow
and approximately an arm’s length away. This distance x will arbitrarily be chosen to be 20
inches for the purposes of the modeling math.

In summary, it can be assumed that air velocity near the microphone source will range from
0 to a maximum less than 10 m/s and more in the ballpark of 5 m/s. The microphone
will be held approximately 20 inches (0.5 m) away from the subject’s mouth which as an
approximate radius of 0.75 inches (0.02 m). Before diving into the transform required to
map airflow at the mouth and flow at the microphone, it is important to first demonstrate
it is indeed possible to measure airflow in the range of 0 to 10 m/s range using a MEMS
microphone.

7.2 Physical Models

This section will broadly survey various approaches to promising airflow modeling that may
be applicable based on the constraints outlined in the last section.

Prior work in acoustics has done an excellent job modeling the effect of external wind on a
microphone membrane with the primary purpose of creating optimal windscreens. In order
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to design a windscreen with optimal noise attenuation characteristic, the dynamics of wind
and the rigid sphere design of the microphone exterior must be investigated. While the goal
of designing a wind attenuator is in opposition to the objective of this research, the theory
gives rise to the relationship between airflow and recorded sound.

Tab. 7.1: Fluid Dynamics Terms

Term Definition

Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously
with a decrease in pressure or a decrease in the fluid’s potential energy
in order to adhere to the law of conservation of energy.

laminar flow a smooth flow where each particle follows an uninterrupted path,
never interfere with one another. Occurs at low Reynolds numbers,
where viscous forces are dominant. Characterized by smooth, con-
stant fluid motion.

turbulent flow an irregular flow characterized by tiny whirlpool regions. Occurs at
high Reynolds numbers and is dominated by inertial forces, which
tend to produce non constant velocities such as chaotic eddies, vor-
tices and other flow instabilities.

bluff body a body that has separated flow over the majority of its surface as a
result of its shape. In other words, a body which when kept in fluid
flow, the fluid does not touch the whole boundary of the object, but
instead leaves a wake which causes drag. A school bus is a bluff body
compared to an aerodynamic Lamborghini.

Reynolds number a dimensionless value measuring the ratio of inertial forces to viscous
forces used to describe the degree of laminar or turbulent flow. Larger
Reynolds number results in more turbulent flow. Correlated with
velocity.

stagnation point a point in a flow field where the local velocity is zero and the total,
stagnant pressure is maximized.

7.2.1 Airflow Microphone Model

A sphere, like that of a traditional microphone head, can be modeled as a bluff body because
flow with enough velocity hitting one side of the sphere will not touch the opposite side and
instead leaves a wake. This is true with a smartphone microphone as well. As the flow speed
increases, Reynolds number also increases which leads to a more turbulent wake. For this
described model, it is assumed the flow is incompressible and the directional effects of wind
hitting bluff microphone sphere are ignored (one-dimensional flow). The time-dependent
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stagnation pressure term is conveniently given by the equation defining Bernoulli’s Principle
and is independent of the sphere’s radius:

P (t) = 1
2ρV (t)2 (7.2)

This can be expanded using Reynold’s decomposition to be expressed in terms of the average
laminar flow velocity, U , and the fluctuating turbulent velocity magnitude u(t):

P (t) = 1
2ρU

2 + ρUu(t) + 1
2ρu(t)2 (7.3)

So what can be learned from this? Since P (t) is the maximum pressure on the body due to
the deflection of airflow, then fluctuating air velocity can, therefore, give rise to fluctuating
stagnation. Furthermore, when the spherical object contains an embedded pressure sensitive
membrane, similar to a microphone, this stagnation pressure has a dominating effect on the
sound picked up by the sensor. Therefore, the theory suggests wind speed can be tracked
with a microphone by exploring the stagnation pressure which governs the magnitude of the
pressure experienced by the membrane.

In other words, it is expected that sound amplitude recorded via the microphone is pro-
portional to wind speed when constrained to an ideal, rigid spherical model with one-
dimensional flow. This is empirically verified by anyone who has tried to record audio when
it is windy. In order to actually understand the transformation from recorded sound to wind
speed, especially on a spectral level, experiments must be conducted as the effect is com-
pletely dependent on the bluffness and geometry of the microphone sensor and enclosure.
The next section gives an example of such an experiment.

Infrasonic Wind Speed Measurement
Developing accurate methods to measure the speed of airflow, specifically wind, at the source
of the microphone has been a research topic for about as long as portable microphones have
existed.

Past research by NASA and the government dating back to the 1960’s used a simple infrasonic
(sound below the limit of human hearing, i.e., < 20Hz) technique, as well as the theory
above, to measure the speed of the wind. After recording wind of known speed with a special
microphone limited to the 1 to 20 Hz range, researchers were able to accurately measure
wind speed from 2 to 7 m/s simply by measuring the overall loudness of the recording
within the narrow 0 to 20Hz band [11]. Their findings showed a roughly 5 dB increase in
loudness in the infrasonic bands for each 1 m/s increase. It is also intuitive to suggest faster
wind would result in greater modulation in the microphone membrane and thus a louder
recording. Other research has verified this and also shown the loudness to speed relationship
begins to fail or becomes more complicated as the frequency range is increased into the
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audible sound domain [58]. While the findings alone are not directly applicable since MEMS
microphones can not measure sound fluctuations below 100Hz, the general concept can still
be utilized.

In the case of airflow, the two main components that contribute to the noise recorded by
a traditional microphone are the natural turbulence of the airflow and the manufactured
turbulence generated when the natural air strikes the microphone assembly and disrupts
the membrane. Several potential models of this are motivated by simulation and controlled
experimentation as presented in "A Review of Wind-Noise Reduction Methodologies" [87];
however, these are not discussed here because they cannot be directly transferred to the
modern MEMS microphone as they are very specific. They do show that with the right
model one can learn a great deal about the airflow from the spectral density of the sound
recording. Unfortunately, in most cases, the spectral region of interest is within the infrasonic
range when the air velocity is between of 0 to 10 m/s. This conclusion is also elegantly
present in nature. Wind can indirectly generate infrasound through its turbulent nature.
This infrasound, or slow pressure variations, are what create ocean waves. As wind speed
increases, so do the sizes of ocean swells, but not necessarily the frequency of the wave.

To conclude, the turbulence created from airflow gives rise to infrasonic pressure waves
which manifest as low-frequency noise when picked up by a microphone. As airflow velocity
and turbulence (Reynolds number) increase, the infrasonic waves and perceived noise is
magnified. While there is not an obvious change in the frequency content as velocity increases,
some complex models reveal a subtle but measurable effect, mostly in the infrasonic bands.

Audible Band Wind Speed Measurement
An experiment is conducted and documented in Section 10.1 which tests how well this
simple loudness based method transfers to a modern smartphone. The findings suggest
the method is feasible for measuring constant airflow flow in the 0 to 4 m/s range with a
MEMS microphone. The experiment also showed this method could only be used to track
steady-state airflow and is not suitable for rapid variable flow.

Ultrasonic Wind Speed Measurement
Another experiment, also outlined in Section 10.1, attempts to measure airflow using
ultrasonic sound outside of the human audible limit near the upper limit of what MEMS
microphones can detect (between 20kHz and 23kHz). In this experiment, the Doppler shift
due to the airflow is investigated as a potential way to measure the airflow. This experiment
is still in process so results have not yet been reported. It seems a large barrier to this
approach is that physical movements such as phone wiggling or body motion can also add a
lot of noise in the ultrasonic region of interest where the airflow is also occurring. Other
work has successfully used ultrasonic Doppler shifts to measure airflow in air conditioning
ducts, which doesn’t have the issue of external motion other than air [71]. Ultrasonic
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processing can also be used to measure breathing rate for people sleeping; however, this
technique measures chest expansion rather than actual airflow [4]. With stereo microphones
it may possible to measure airflow by analyzing the phase shift between the two microphone
sources, assuming their displacement is known. This is also part of the active ultrasonic
experimentation being conducted.

Conclusion
The goal of this section is to investigate if airflow can be tracked from a microphone and
the answer is yes, followed by a shrug since the relation is very application specific. Next, a
spirometry specific transformation will be explored that will map airflow at the mouth to the
flow measured at the position of the microphone.

7.2.2 Airflow Mouth Dispersion Model

The above model sheds light on how airflow velocity at the microphone source can be sensed.
The issue of converting flow measured at the microphone to flow at the source of the mouth
still remains. Prior work involving SpiroSmart, approximated this transform as a spherical
baffle in an infinite plane where arm distance and head circumference must be known [46].
The aim is to model the head as a sphere in an infinite plane with air flowing around it to
approximate an exhale. The inverse of this model allows one to compute the pressure at the
exterior of the sphere (where the mouth would be) given the pressure an arm’s length away.
The main limitation of this model is it assumes airflow out of a pipe (mouth) is the same as
airflowing around a sphere.

Another approach, which will be adopted in this work, models airflow from the mouth as
flow through a pipe which disperses into an infinite plane or open channel similar to the
depiction in Figure (b) of7.1. This is known as a turbulent jet model and is a standard particle
dispersion statistical model which assumes the turbulent flow yields particle dispersion in
a plume-like manner when averaged over time. The laminar flow is streamlined and loses
velocity as the frictional components generate turbulence. The extent to which this occurs
depends on the Reynolds number. At any given time, a snapshot of the flow will appear
random due to the turbulence, as shown in panel (a) of Figure 7.1, but the true distribution
becomes clear when integrated over time. This type of mixing model is used for many
general particle dispersion such as smoke or heat and was first suggested by fluid dynamics
pioneer GI Taylor, nearly a century ago [82].

As mentioned before in Equation 7.3, the total velocity is the sum of the laminar flow, U ,
and the turbulent flow, u(t). In the case of an exhale, it is difficult to know the proportion of
each component at any point in time, however, it can be certain that there is a component of
both. Anyone who has observed a smoker exhaling can confirm the smoke stream forms a
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Fig. 7.1: (a) Typical experimental image of the instantaneous particulate distribution as illuminated
by the laser sheet. Scale bar is 1 cm. (b) Empirical contour plot of the time integrated
particulate intensity. Red denotes high particulate concentration, blue denotes zero concen-
tration. (c)–(e) Cross sectional profiles of intensity vs. spatial displacement take the form
of a Gaussian. Source: Turbulent dispersion via fan-generated flows

plume-like trajectory rather than a narrow streamlined one due to the conversion of laminar
to turbulent flow, yet still has a general trajectory due to the source laminar component. In
this model, the plume width increases with distance from the pipe source, while the particle
velocity decreases with distance. Therefore the relationship between velocity and plume
width at a given distance can be modeled as a Gaussian that traces the spatial intensity along
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the axis normal to the flow of air and with a width, σ, proportional to plume width (4σ ≈
plume width). This is depicted at three different distance slices in Figure (c) of 7.1 [31].

The normally distributed velocity at a given distance slice, x, can be parameterized as a
scaled Gaussian:

u(x, z) = umax exp
(−z2

2σ2

)
(7.4)

Where u(x, z) is the velocity at a distance x from the pipe, z is the distance from the
centerline and σ is the plume width. The σ at an arbitrary x is not known, but it can be
approximated if the pipe orifice diameter, d is known and the open air channel medium is
made up of a quiescent particle of similar properties of the exhaled particles. In this case,
the plume adapts a conical shape and laboratory observations reveal that all turbulent round
jets possess the same opening angle, regardless of fluid, orifice diameter, and initial velocity
[16]. The universal value is 11.8 °, yielding a cone radius distance ratio of: tan(11.8) = 1

5 .
Note, x = 0 must be set at the incident angle a distance 5d

2 into the pipe (Figure 7.2). Since
the cone radius at any x is half the width of the plume width, which is ≈ 2σ, it can be said
that σ ≈ x

10 . This outcome can be substituted in for σ into Equation 7.4. Now the velocity at
any point in the plume is expressed as a function of umax.

Fig. 7.2: Typical jet turbulence model with the universal angle shown. Note this figure depicts what
was defined earlier as z as r [16]

By acknowledging there are no external acceleration forces and the only source of momentum
is from the jet stream exiting the pipe, umax can be derived by integrating along the cone
volume such that momentum is conserved. The result is shown in Equation 7.5. Also note
that average velocity is umax

2 .

umax = U
5d
x

(7.5)
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In other words, the velocity along the centerline of the jet indeed decreases inversely with
distance from the pipe source. The empirical result collected from studying several fans
suggests a slightly different result. It was found that the plume takes more of a paraboloid
shape rather than a simple cone. This is due to extra turbulence induced by the fan blades.
If this were also the case in an exhale, umax fan would decrease according to the inverse
square of x as follows:

umax fan = U
ld√
x

(7.6)

Where l is an unknown mixing length constant that describes the contribution of rotational
turbulence from fan blades or in our case the respiratory system. Since the shape of the
plume expansion and the turbulence contributed by the respiratory system are unknown
without proper experimentation, it is impossible to know the true velocity decays as a
function of x. The goal is to understand the physical limits, so the ideal, linear decay will be
used in the next section as it would results in a larger velocity at the microphone than the
inverse square decay. Either way, with the ideal model, the velocity at any region within the
wake of the exhale plume can be computed assuming the pipe or mouth diameter is known
and the velocity at the lips is known. This model can then be inverted to provide the velocity
at the lips given the velocity measured near the phone microphone.

Applying the Physics Model

The following constants are taken from the Physical Constraints section above and applied
to Equations 7.5 and 7.6:

Umouth = 9.82m/s

dmouth = 0.04m

xmouth to phone = 0.5m

x = 0.5 + 5d
2 = 0.6m

umax = 9.82(5)(0.04)
0.6 = 3.2m/s

uplume avg = 3.2
2 = 1.6m/s

So based on the ideal Airflow Mouth Dispersion Model, the max velocity at the microphone
source during a peak flow instance for a large male can be expected to be 3.2 m/s assuming
the microphone is aligned with the centerline normal to the mouth surface. If the phone’s
position is offset from the centerline, the velocity can be approximated using the scaled
Gaussian distribution.
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Conclusion
In both the microphone and dispersion model, several assumptions were made in order
to shed light on a physical model that satisfies the constraints of the problem. It would
be naive to assume these models will hold up in reality, but at least they give a sense for
what to expect. Furthermore, in order to unify the models, several more factors must be
considered. For example, the effect of the turbulence created near the microphone due to
the blunt wall surface of the phone, or the effect of the hand and arm holding the phone.
Also, a form of non-linear amplification of the microphone signal by the phone operating
system could further complicate the modeling. Nonetheless, the exercise is a useful step to
begin understanding the difficult fluid dynamics that characterize the airflow interaction
that occurs between the mouth and the microphone membrane.

Given the apparent complexity in the task of modeling airflow from the mouth to how it is
sensed on a MEMs microphone and presented digitally, it is reasonable to turn to machine
learning to use data to fine-tune and fit the optimal model to this elaborate problem.
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8Machine Learning Background

„With great power comes great responsibility.

— Uncle Ben
The Amazing Spider-Man comic

8.1 Introduction

Machine learning is a subfield of artificial intelligence (AI) focused on making AI learn from
their experience. Contrary to typical control theory or rule-based algorithm development,
in machine learning (ML), instructions are not provided for the machine to follow. Instead,
examples of the intended behavior are collected and the machine ingests the information
using a learning algorithm, then assembles what it learned into a program or model that
attempts to mimic the intended behavior. Ideally, the computer learns to be clever rather
than relying on a clever programmer to explicitly code up its behavior. The key word here is
"ideally". Often times humans must intervene and spoon feed the exact, relevant information
in the form of manual features. The key to any machine learning problem, or learning in
general, is the data. In this work, there is a complete chapter dedicated to the dataset used
in the work (see the Dataset chapter).

Machine learning has become the standard tool for solving many complex problems from
speech recognition to photo object detection. It is often compared to a human brain as
both the brain and an ML algorithm are very good at detecting specific patterns that are
understood after copious amounts of data have been ingested. There are problem areas
where machine learning is not ideal or preferred, such as when enough data is hard to obtain,
or a mathematical solution already exists. For example, it is very difficult for ML algorithms
to learn the concept of a Fourier transform (described in the Sound Background chapter
), even though the algorithm was first published over 200 years ago. The key to machine
learning is knowing when to use it.

Regarding sound based spirometry, as shown in the Airflow Physics chapter, modeling how
airflow is sensed by the MEMS microphone is extremely complex with many constants and
geometries either unknown or tedious to measure. On the other hand, recording the sound
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of airflow in an experimental environment is simple. When data is easier to gather compared
to a physical model, machine learning is a promising solution. This is even more so when
the data contains complex information as in the case of sound. Machine learning is also
generalizable to a wide variety of environments and has been shown to perform well in
domains not well represented in the data it learned from. For example, an English speech
recognition AI can be retrained on a relatively tiny corpus of French vocabulary and still
outperform any human tuned algorithm [38].

8.1.1 Types of Machine Learning

At its core, machine learning is a methodology of statistical guessing and it involves many
algorithms and problem types. This section will provide a brief overview of the main types of
machine learning. This work is mostly based on supervised learning, although some critical
tasks are solved with semi-supervised and unsupervised learning.

Supervised Learning
A supervised learning system involves a "teacher" that provides example inputs and their
desired outputs. The goal is to learn a mapping from inputs to outputs that also works well
on new inputs (generalization). This is machine learning with an asterisk as it requires
constant human intervention and labeling. Supervised learning is commonly used as it
typically works well for many problems and is amazingly effective when sufficient (>10,000)
labeled training examples are available.

Semi-supervised Learning
The goal of semi-supervised learning is to discover characteristics of a dataset when only a
subset of the data is classified or labeled. Perhaps 10% of a 100k dataset has labels, then
an ML model can be trained on the labeled portion then attempt to classify the unlabeled
portion. Following this, human labelers can correct some of the modeling errors on the
unlabeled set (which probably does much better than random guessing), then feed it back
through. With each iteration of the model comes improvement, and it may eventually reach
a point where it is trusted to achieve its goal, well before the 100k set is manually labeled.

Unsupervised Learning
Unsupervised learning draws inferences from datasets consisting of data without labeled
responses. This technique can be used to discover patterns in data without upfront interven-
tion or guidance. Clustering is one form of unsupervised learning. A clustering algorithm
may naturally learn the difference between a sunrise photo and a selfie simply from the
arrangement of colors or edges. Or in the case of shopping recommenders, clustering is
used to group shoppers based on purchase history, then suggest products based on mutual
shopping patterns within the cluster.
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Reinforcement Learning
A reinforcement learning algorithm (RL), or agent, learns by interacting with its environment
in a free form. The agent receives a reward when it correctly completes a task and is
penalized if the task is failed. An agent typically learns without human intervention by
maximizing its reward and minimizing its penalty. This is the type of learning used in AI
game players such as chess bots or an automatic video game players. In these cases, the
reward is points, or winning, or surviving. The key is for a human to correctly identify this
reward. A bad example of a reward would be to instruct an autonomous driven agent to
simply, "never crash". It would very quickly learn that the optimal strategy is to not move.

8.1.2 Common Machine Learning Tasks

Another way to think about machine learning is by the tasks, or use cases, that it needs to
perform. Table 8.1 summarizes such tasks within the spirometry context. This work mostly
utilizes binary classification for spirometry effort detection and regression to transform the
audio signal into a flow curve and metrics.

8.1.3 Input Features

Recall from the Sound Background chapter there exist many ways of representing the sound
that is innately conducive to different insights and feature extraction. There are two ways to
build a set of extracted features for an ML model: manually or automatically. The manual
method is more traditional as it allows engineers to bake their expertise into the problem
by extracting intelligent relevant features. The automatic method is data-driven, rather
than engineer driven. It is usually implemented with a deep neural network (DNN), more
specifically a convolution NN (CNN). A raw form of the input is supplied in a DNN, such as a
spectrogram image, and the DNN learns which parts are meaningful or worth analyzing in
an automated way. This distinction is expressed in Figure 8.1.

8.2 Classical Machine Learning

In the manual case, engineers preprocess the input data, sound in this case, and convert the
high dimensional sound data (thousands of discrete samples) into a more manageable table
of features. Such features may include, number of peaks, duration, low-frequency loudness,
and average loudness. Each feature is a single value such that the set of features for all
sound can be expressed as a table where columns are features and rows are different sound
files. This feature matrix, X, has N unique sound rows and M features and must be paired
with a ground truth table, Y which has N rows, but a single column of the desired output.
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Tab. 8.1: Common machine learning tasks in the context of spirometry

Data Driven Question Machine learning task of choice

Is this sound a spirometry exhale?
How certain is the prediction?

Binary Classification: Classify the elements into two
groups on the basis of a classification rule. Often times
the predictor answers a true/false question as being
a true if there is a > 50% likelihood, otherwise it is
determined as false. In this case 50% is the decision
threshold.

Does this sound contain speech,
coughs, airflow, or something else?

Multi-class Classification: Classify instances into one
of multiple classes. Similar to binary classification, typi-
cally a likelihood is assigned to each class and the class
with the highest likelihood is selected.

How healthy are my lungs? Regression: Predict a continuous value for each exam-
ple, such as a score between 0 and 100.

What is the airflow vs time se-
quence given this sound sequence?

Sequence to Sequence Regression: Predict a set of
continuous values given a separate sequence. Language
translation is another example.

Given several unlabeled exhale
sounds, which ones have wheez-
ing?

Clustering: Organize data into common subsets or clus-
ters in an unsupervised manner.

Are these exhale sounds from the
same person?

Factorization: Matrix factorization techniques and
other supervised or unsupervised embedding models
can be used to provide a global similarity metric be-
tween any two items. Also used for person detection.

With this notation, the ideal ML algorithm (with unlimited data), f , perfectly maps input X
to output Y such that: Y = f(X). The machine learning process aims to create the ideal f
by trying an arbitrary f ′ to obtain a prediction for Y , defined as Y ′. In order for f to do a
good job approximating Y , two rules need to be established.

First an error function, E (also called a cost or loss function), must be defined to evaluate
how well the approximation Y ′ matches the ground truth Y . The goal of the ML model is to
formulate f in order to minimize E(Y, Y ′). In regression, E is usually mean squared error
(MSE), and in binary classification, E is typically cross-entropy (also called log loss). There
are several cost functions to choose from, but for this work, only these two are used unless
otherwise stated.
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Fig. 8.1: Visual indicating the difference between manual and automatic feature extraction

Second, an update rule must be defined. Minimizing the cost function is an iterative,
optimization process. The ML algorithm suggests a f and then E can be computed. The
update rule must define how f should be tweaked for the next iteration based on the E of
the current iteration. The goal of the update rule is to generate a new f that achieves a lower
E than the prior version of f . Unlike the cost function which is dependent on the problem
being solved, the update rule is usually defined by the ML algorithm being used, a common
one being stochastic gradient descent (SGD). It turns out there are a few different basic
types of ML algorithms for both classification and regression that inherently have different
update rules and subsequently different strategies for developing a strong model, f . Before
going into the different manual machine learning models, a simple regression example will
be described to solidify what was just stated.

Applied Example
Joe is an aspiring, but hot-tempered golfer who has placed his trust into his patient robot
coach, TigerBot. Joe’s goal is to master hole 5 by landing his shot on the green, rather than
in the trees, sand or water. Every time Joe swings, TigerBot receives swing features, X. To
keep it simple, X has two columns, x0 quantifies swing speed and x1 quantifies the swing
angle. TigerBot does not have a way of seeing where the ball lands, but fortunately, Joe
very clearly expresses his feelings through speech making it possible for TigerBot to know
how bad the shot was based on the amount of cursing and grumbling perceived. Therefore,
Y ′ is expressed as the anger quotient where a large value means Joe is very upset and the
desired Y is the minimal anger quotient of 0. Using squared error as a cost function, the
cost function for TigerBot to minimize can be defined as E = (0− Y ′)2. Following a shot,
TigerBot gives Joe advice via update function, such as "swing twice as hard", or "adjust the
angle a bit to the left". Despite what Joe may think, to TigerBot he is just a function, f that
produces an output Y ′ from a shot with features X. Eventually, after perhaps 100 attempts,
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Joe will be ecstatic as he has finally landed the ball on the green. Alas, E is now much
smaller and Joe gets to go home a happy, improved golfer while TigerBot can rest assured
the job it was designed to do has been done.

In this example, the key concepts for a standard machine learning algorithm are applied.
Furthermore, it shows that an ML algorithm doesn’t need a highly accurate ground truth
metric to measure and minimize error. An ideal, physics model might have information about
the exact trajectory of the ball and use that to tell Joe exactly how to swing. In contrast,
ML uses weaker, but easier to obtain information, such as the sounds of disappointment,
to reach a formidable solution provided enough training examples are provided. The next
section will dive into classical ML model types used in this research.

8.2.1 Linear Models

Linear models are the simplest to understand and are best when the relationship between X
and Y is linear.

Linear Regression
In the regression case, a linear model attempts to fit a straight hyperplane to the dataset (i.e.,
a straight line of best fit when X describes a single feature). Typically, a one-dimensional
linear model fits a bias b and a weight vector w to the data to satisfy: y′ = wx+b. In multiple
dimensions this may be expressed in vector notation as shown in Equation 8.1:

Y ′ = W TX = b+
∑

i

wixi (8.1)

Where the bias b is treated as the first value on W and a placeholder 1 is inserted as the first
value of X for simpler notation. To prevent overfitting, regularization techniques like LASSO
(L1) and Ridge (L2) are often used. Regularization will penalize input features that are less
useful, by forcing their corresponding weight to a near 0 or 0 value. Usually, the penalization
factor can be specified as desired. It is almost always worth including regularization because
it permits post-training analysis which can identify the useful features (with higher valued
weights) and those that can be ignored. Typically the weights are optimized using the
gradient descent algorithm (SGD), which is briefly covered in Artificial Neural Networks.

Logistic Regression
In the classification case, Logistic Regression (yes, the name seems contradictory) is used to
draw a linear hyperplane to separate classes rather than fit a trend as in linear regression.
When a new sample is presented, the logistic regression algorithm looks at where the sample
falls relative to the decision plane and estimates the probability of the sample falling into
a certain class (this is the regression part). The probability is computed using a softmax
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function, which is also common in neural networks and described later. Given the probability,
p, a decision threshold, T will output a 1 if p > T otherwise, a 0. Usually 0.5 is used as
T . When the decision is more complex than what can be represented by a linear plane,
other approaches must be used. One such approach, support vector machines (SVM), has
the ability to fit curved and other non-linear distributions, as shown in Figure 8.2. Other
non-linear approaches include decision trees and neural networks.

8.2.2 Decision Trees

A Decision Tree is a supervised predictive model that can learn to predict discrete or
continuous outputs based on the values of the input features it receives from a set of simple
questions. It is similar to the Twenty Questions guessing game where a guesser might ask
questions like "Is it alive?" or "Is it furry?" to continually narrow the solution space down with
each question. Part of the strategy in Twenty Questions is to correctly order the questions:
the first few questions should be broad so as to eliminate a large number of possibilities,
while the last few should be more specific to hone in on the "best" possible answer. A decision
tree works the same way where the inquiries are related to the input features.

The decision tree algorithm has an natural tree representation. The tree begins with a root
followed a series of branches whose intersections are called nodes and terminal ends are
called leaves, each corresponding to one of the classes to predict. The depth of the tree
defines the maximum number of nodes before terminating at a leaf. Each node of the tree
represents a rule specific to an input feature, that can be phrased as a question. During
training, a decision tree tunes the questions and the order at which they are asked in such
a way that each node corresponds to the rule that best divides the set of initial features.
Given the natural hierarchy of nodes, it is possible to extract the importance of each input
feature based on the ordering of questions. This is useful for feature selection in a similar
manner to using regularization in linear models. It is also very easy to interpret how the
model makes a prediction as the tree can simply be plotted and traversed. Finally, decision
trees have the ability to model non-linear distributions as shown in Figure 8.2. Overfitting
is a common problem with these models as they can be too curious and develop overly
specific rules that do not generalize well to new data. They are therefore somewhat unstable
compared to linear models, although some of the variants address this issue with clever
tricks. The set of questions followed by their ordering is critical to the success of a decision
tree model; however, it is nearly impossible to identify the perfect strategy. There are several
tree based ML models that employ different techniques to achieve the ideal tree model.
The two methods used in this work are Random Forests (RF) and Gradient Boosting Model
(GBM). Both RF and GBM are ensemble methods, which means the model is a combination
of several smaller decision tree models, but they have fundamental differences.
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Fig. 8.2: Different classification algorithms applied to a non linear binary decision distribution,
clearly the linear fit is not adequate and the decision tree is prone to overfitting, while SVM
is well equipped to offer a generalized solution

Random Forests
The idea behind RF is to build many small trees that use a random subset of the features
and then combine them into a “forest” of trees by employing a voting based update rule.
Each tree by itself is a weak predictor, but combining many of them often yields a much
stronger model. Since decision trees are highly prone to overfitting, each weak tree will
overfit the data in a different way, and through voting, the differences are averaged out and
the strength of the consensus increases.

Gradient Boosting
In contrast, GBM is more sophisticated. The idea is to again, combine weak predictors,
but the trick is to find areas of misclassification and then “boost” the importance of those
incorrectly predicted data points to prioritize fixing the error, then repeat. The update rule
essentially uses gradient descent to decide which tree to boost and by what magnitude.
While RF trains a new independent predictor each iteration creating a forest of trees, GBM
only creates one tree which is iteratively improved. The resulting GBM model is often
much smaller and faster than the RF equivalent but usually requires more data for adequate
performance.

8.2.3 Clustering

As mentioned in Table 8.1, clustering is the task of dividing the dataset into a number of
groups such that data in one group shares similarities that differ from the data in other
groups. The groups are typically organized by sets of features highly correlated to a particular
outcome. For example, athletes who have features such as long legs and thin body types may
end up in a cluster that correlates to runners, while short legs and light body weight athletes
end up in a jockey cluster. Clustering does not have to be supervised. In the athlete example,
the same cluster could be formed without knowing the correct sport. Having labels, of
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course, allows for the model to have more predictive power and certainty that it is learning
the desired classification or regression relationship.

k-nearest neighbors
K-nearest neighbors (KNN) is one such algorithm that clusters all of the training data based
on the features. A new prediction is computed by exhaustively comparing the new input
features to every training data point and choosing the top k data points with the highest
similarity. There are various ways of measuring similarity; however, the final prediction is
based on the average prediction of the top k data points. This algorithm assumes two similar
Y outputs also have highly similar X feature sets. When this is the case, KNN works very
well but it is very vulnerable otherwise. Since all of the training data must be searched for
every new prediction, this method does not scale well in scenarios involving large datasets.

K-means
An unsupervised form of clustering known as K-means clustering, attempts to sort unlabeled
data into K separate sets. Each set contains a centroid, and the distance between the
centroid and all the individual points in the set is minimized. For example, clustering a large
set of documents based on the contained words may naturally sort them into categories that
represent business reports, personal notes, and bills. K-means is used in this work to sort
the large dataset by timezone in order to reveal the original clinic where each sample was
collected (see Chapter 11). Aside from clustering data based on similarity, it is important to
note the K in K-means algorithm is completely different than the k in KNN despite sharing
the "k".

8.2.4 Sanity Check

It is a good idea to verify a trained model is actually doing a good job. In many cases, there
may not be an existing benchmark for a machine learning problem so it is therefore wise to
formulate a benchmark using a very simple, predictive model. If a more advanced model
performs only marginally better this, it may suggest that the problem is either too difficult or
the features are suboptimal. If one of these simple models performs surprisingly well, it may
suggest an inherent correlation between X and Y that can be exploited without the need for
machine learning.

In regression, a useful sanity check is to compute the mean Y for all inputs and then measure
what the error would be if the mean were guessed on every sample. In the classification
space, it is easy to compute the probability of guessing the correct class as 1/Nclasses. A
better classification technique than random guessing is to use Naive Bayes, which builds a
model based on the probability of each class and then guesses based on this distribution. For
example, if the training data has 80 apples and 20 bananas, a Naive Bayes model would
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make predictions assuming these statistics remain true in the future data and guess banana
20% of the time rather than 50% in the case of random guessing. If a trained ML model is
not much better than one of these basic attempts, it is not doing a very good job learning
and there is most likely an issue with the data or problem in general. This type of sanity
checking has helped identify errors and flaws with the methodology used in this work that
may have otherwise slipped through the cracks.

8.3 Artificial Neural Networks

This section will build a foundation for artificial neural networks as they are heavily explored
as a potential solution in this work. The hope is to convey how artificial neural networks
automatically extract powerful features by employing thousands of tunable artificial neurons
inspired by how the human brain operates. Artificial neural nets are commonly grouped with
artificial intelligence, so the discussion will start by outlining the recent commercialization
efforts of artificial intelligence, as well as its theoretical foundations.

Artificial Intelligence

The concept of artificial intelligence is continually working its way into modern society. The
news claims it will take everybody’s jobs, businesses boast it is saving them millions, and tech
lords peg it as the biggest threat to humanity. It was once a topic of philosophy and fantasy
entertainment, but recently has now crept into many people’s daily lives. Arguably the most
useful services provided by search engines, digital content providers, email, navigation apps,
shopping and personal assistant hubs are powered by AI. Despite its ubiquity in everyday
life, it remains elusive.

When products are advertised as "battery powered" it is patently obvious to the average
consumer how the product is differentiated from other, perhaps "wired" counterparts. When
a product is branded as "AI-powered" there is no consensus as to what is entailed. When
something is prefaced with "artificial" it is typically a manufactured copy of a physical,
well-understood equivalent. But intelligence is neither physical or well understood and as
long as this is true, artificial intelligence will remain a nebulous term with few implications.
In fact, once a form of artificial intelligence is mainstream enough, it is no longer considered
intelligent, rather it is simply another form of computing, simply reflecting on the fact that all
luxuries are doomed to become necessities. For this work, intelligence will be pragmatically
defined as the ability to perceive information, and retain it as knowledge to be applied towards
adaptive behaviors within an environment or context [91].
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Brain Analogy
Based on what has been observed to date, anything naturally intelligent possesses a brain.
Furthermore, a brain with more connections, or a larger neural network, is generally
considered more intelligent. Following this logic, researchers postulated, anything processing
artificial intelligence must have some sort of artificial brain with similar functionality as a
natural, human brain. With this came the concept followed by the crude implementation of
an artificial neural network.

Much of how the human brain works is still a mystery, yet research is uncovering new insights
at a rapid rate. For example, it is known that the most basic element of the human brain is a
specific type of cell called neurons. Unlike the rest of the body, neurons do not appear to
regenerate. Given this, it is assumed these cells are what grant us the ability to remember,
think, recognize patterns and learn from experience. All 100 billion of these cells throughout
the body can connect with hundreds of thousands of other neurons. A neuron itself is not
much of a mystery anymore and can be classified in about 100 different ways, but the ways
they work together and function as a brain is still unknown. What is known is the power
of the brain comes from the complex connections between neurons, neuroplasticity which
allows neurons to evolve and improve functionality over time, and most importantly, the
sheer numbers of neurons which form the neural network.

A typical neuron receives information from other neurons through a host of thin receivers
called dendrites. The neuron sends out spikes of electrical activity through a long, thin
pipeline known as an axon, which splits into thousands of terminal branches, as shown in
Figure A of 8.3. A neuron can be thought of as an information gate which produces an output
along its axon i.e., it "fires" when the collective effect of its inputs reaches a certain threshold,
called the action potential. The axon from one neuron can influence the dendrites of another
neuron across electrically stimulated junctions called synapses, as illustrated in Figure C of
8.3. Some synapses will generate a positive effect on the adjacent dendrites which encourage
its neuron to fire and propagate the action potential, while others will produce a negative or
neutral effect. Learning occurs by adaptively changing the firing threshold which adjusts
how one neuron affects there others.

A software-based artificial neuron is similar and depicted in Figure B of 8.3. It consists of
a processing element which has a number of input connections, each with an associated
weight. A transfer function operates on the weighted sum of the inputs to determine the
output, which is then connected to adjacent artificial neurons. Therefore, an artificial neural
network, Figure D of 8.3, is a network of interconnected, artificial neurons, although the
scale is dwarfed compared to human neural networks. The artificial network is trained by
iteratively adjusting the multiple weights of each neuron such that the network produces the
correct output for a particular input in the training data.
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Fig. 8.3: Illustrates the artificial brain analogy. A neuron (A) compared to an artificial neuron (B)
where both have multiple inputs, which influence the output through some embedded
function, the artificial neuron has weights expressed as w and inputs as x. Neurons can be
combined as in (C) to form a neural network and communicate via synapses. Similarly
artificial neural networks (D) are a combination of artificial neurons.

The brain analogy is somewhat fragile and many scientists caution against taking it too
seriously. Artificial neural networks try to model the low-level functionality of the brain;
however, the goal is not to emulate a brain, but rather to resemble the properties of the
brain that allow it to learn from experience. Whole brain emulation is a challenge reserved
for computational neuroscience and there is still a lot of work that needs to be done before
we have fully functional conscious brains in our pockets. Humans are not conscious of the
low-level electrochemical processes going on underneath their skin, but the external effect,
whether emotion, thought or action, is certainly apparent. The argument for the neural
network approach to AI is that, if the low-level activities can correctly be modeled, the
high-level functionality may be produced as an emergent property. This is in direct contrast
with the traditional approach to AI which employs rule-based symbolic reasoning to model
the high-level reasoning processes of the brain. From this point on, neurons and neural
networks (neural nets or NN for short) will refer to the artificial variant, not the biological
human brain.

History
Artificial neural networks are not a new concept. The earliest work goes back to the
1940’s when McCulloch and Pitts introduced the first neural network computing theoretical
model [57]. Also around this time Alan Turing laid out several criteria to assess whether a
machine could be said to be intelligent, now known as the "Turing test" [84]. In the 1950’s,
Rosenblatt’s work resulted in a two-layer network referred to as the perceptron, which was
capable of learning certain classifications by adjusting connection weights [73]. Although
the perceptron was successful in classifying certain patterns, it had a number of limitations.
For example, Papert and Minksy were unable to solve the classic XOR (exclusive or) problem
among other things [62]. Such limitations led to the decline of the field of neural networks
for several years.

In the 1980’s, researchers showed renewed interest in neural networks and began to create
improved perceptron inspired networks consisting of several perceptrons arranged in multiple
layers, now called artificial neurons. There were two key findings that stemmed from this
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research. First, it that using an algorithm called backpropagation, one could efficiently
update the weights of several neurons in multiple layers [74]. Second, it was theoretically
demonstrated that multi-layered neural networks had the ability to learn any function.
This was known as the universal approximation theorem. Still, these networks did not
easily scale as they took weeks to train and usually proved no better than existing simpler.
Neural networks came back into the spotlight in the mid-2000’s and in order to differentiate
them from previous iterations, researchers began calling them "deep" neural nets because
they combined many more trainable layers than the less capable "shallow" nets of the past.
Training deep neural nets (DNN) became known as deep learning.

The true breakthrough came in 2012 as a result of several key ideas and resources coming
together. By this time graphics processing units (GPU) were incredibly powerful matrix
calculators thanks to the sharp rise of computer gaming and later, Bitcoin mining. These
GPUs also allowed neural networks to train much faster on complex data such as images or
audio. Also around this time, a large database known as ImageNet containing millions of
labeled images of pretty much everything was created in 2010 and published by Fei-Fei Li’s
group at Stanford [75]. This sparked yearly research competitions where researchers and
companies such as Microsoft and Google battled to push the state of the art in large-scale
image classification. In the first two years of the contest, the top models had error rates
of 28% and 26%, respectively. However in 2012, Alex Krizhevsky et al. entered a neural
network based submission, named AlexNet, which nearly halved the existing error rate to
16% [43]. Its success came from a combination of several novel ideas that would become
crucial in further developing deep learning. These advances included parallel GPU training
and rectified linear units (ReLU).

Since 2012, deep learning has gone mainstream and with it has come massive high-quality
datasets on just about everything, programming frameworks like Tensorflow that make
training and evaluating a deep learning model trivial, and much more powerful GPUs. Now
every component that makes up a neural network has hundreds of variants optimized for
different problems and data formats. The accelerating growth of GPU computing speed
versus more traditional CPUs is shown in Figure A of 8.4. The ImageNet competition results
are also shown in panel (B) of Figure8.4. Some interesting insights from this data reveal
models with lower errors tend to have more layers (permitted by constantly improving GPUs),
and since 2015 the DNN models have started to outperform humans at image labeling.

8.3.1 Artificial Deep Neural Networks

For a conceptual idea of how a deep neural network learns, imagine a factory line. After the
raw materials (raw training data) are inputted, they are then passed down the conveyor belt,
with each subsequent stop or layer extracting a different set of high-level features. If the
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Fig. 8.4: Two ways of tracking the growth of deep learning. Figure A shows the growth of GPUs in
terms of their floating point operations per second (FLOPS) compared to a CPU. Figure B
shows the rapid improvements in the ImageNet including the recent surpassing of human
level object detection

network is intended to recognize a dog breed from an image, the first layer might analyze
the brightness and colors of its pixels. The next layer could then identify any edges in the
image, based on lines of similar colored pixels. Following this, another layer may recognize
textures and shapes as collections of edges, and so on. By the time the fourth or fifth layer is
reached, the DNN will have created complex feature detectors where clusters of neurons
can identify specific details such as floppy vs straight ears. The final layer before the output
might be an embedding consisting of neurons that describe the input as a dog with curly
white hair, a long snout, straight tail and floppy ears, i.e. a poodle.

These detectors, capable of extracting highly complex features, start as a blank slate. With
the help of backpropagation, gradient descent (explained later) and thousands of labeled
images, the weights of the neurons morph to strengthen and weaken certain connections
such that by the end of training, neurons pass different types of information forward through
the layers. Within a layer, neurons operate independently on the same set of inputs. The
result of each is broadcasted to every neuron in the next layer. Because the tuned neurons
dictate which information is passed along the network, it can be said that neural networks
automatically extract high-level features, which is in direct contrast with the classical ML
methods which require manual feature extraction.

Layers
There are three main types of NN layers: input, output and hidden:

The input layer must have a neuron per subdivision of the input., i.e., if the input is an image
of size 100x100, the input layer must have a neuron for each pixel (10000). If the input is
1 second of sound with a sample rate of 16kHz, then there must be 16000 neurons at the
input. For this reason, it is common to scale down images or downsample audio to reduce
the size (number of neurons) of the input layer.
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The output layer size must represent the number of desired outputs. If it is a dog detector
only a single neuron is needed to specify true (1) or false (0). If it is a dog breed classifier,
100 outputs would be needed assuming there are 100 possible breeds to select from. In
general, the problem becomes more difficult if the number of inputs or outputs is increased as
there is more input information to process and more room for error in the output. Anything
that can be represented as a matrix or vector can be considered as an input or output to a
neural net. Images such as photographs or spectrograms, written text, and sensor time-series
data such as sound or temperature are all common. Also, tabular data such as the manually
extracted features described in Classical Machine Learning can be used as an input and the
NN will likely learn a model that often outperforms the classical methods.

The hidden layers are all of the layers between the input and the output. They can be specified
as any size, although there are rules of thumb to how hidden layers are arranged and sized,
which will be discussed later. As mentioned, generally more layers yield a more powerful
network but only when sufficient training data exists. With a marginal amount of training
data, 3 layers may perform just as well as 10. There are different types of hidden layer
architectures, which will be covered later in this chapter under the Architectures section.

An example neural network was previously illustrated Figure D of 8.3. This network consists
of an input and output with 3 neurons and 2 hidden layers, also with 3 neurons. This
example may be misleading, as the layers do not need to all be the same size. Usually, when
referring to a NN, the number of layers counted omits the input and output. In this example,
the NN has 2 layers of size 3. For the purposes of this work, the computation starts with
the input layer and passes values to neurons in the feed forward (left to right) direction.
More advanced networks such as Microsoft’s ResNet apply skip connections which allow
certain layers to ignore other layers [32]. It may look like the neurons send out multiple
values because there are multiple lines extending from the neuron, but really there is still
only one output value per neuron and it is simply copied or broadcasted along each of its
output connections. Neurons always output one value, no matter how many subsequent
neurons it sends its output to. Furthermore, neurons within the same layer are independent
and do not process information sharing connections.

Loss Function and Update Rule
As with classical machine learning, neural networks have a loss (also called cost or error)
function which measures the error of the model in its current state. The loss function is
typically MSE for regression and binary cross-entropy for binary classification (same as
classical machine learning). The goal of neural net training is to optimize the weights in a
way that minimizes the loss function. The optimization strategy, or optimizer, is the driving
force behind the update rule which must update all of the weights in the network with each
training iteration. For all multi-layered neural networks, backpropagation is the update
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strategy as it is capable of efficiently and exhaustively updating each weight in a tailored,
systematic way. While there are several choices for optimizers in a NN, they are all more or
less based on SGD. Usually mini-batch SGD is preferred over a full SGD because it requires
less memory per iteration and computes the gradient faster as it bins the training data into
small batches (usually 20 to 200 entries each) rather than computing the gradient for each
training entry (which may range from 1000 to 10000 entries).

SGD has a few parameters. When mini-batches are used, the batch size must be specified.
SGD also has a tunable learning rate (or step size) parameter, α, which dictates how
aggressive the weight update will be. A low α means the network will train very slow,
but thoroughly. If α is too large, the weights may never converge because they cannot be
fine-tuned to the ideal configuration. This concept is easily understood in a two-dimensional
optimization case. Imagine starting at an arbitrary point in a 2D bowl (Figure 8.5) and
taking a step of size proportional to α, the goal being to stop when the slope of the bowl (the
gradient) is 0. This point represents the optimal set of weights. When α is small, reaching
the bottom will certainly happen but after a large number of steps. When alpha is too big,
it is possible for the steps to overshoot the minimum and zig-zag from side to side without
ever settling at the bottom. One intuitive improvement to the learning rate dilemma is

Fig. 8.5: Illustrates in a two-dimensional case, the tradeoff in choosing the right step size. Each step
hops across the bowl to get closer to the bottom. The hop magnitude is based on the step
size.

to employ a variable learning rate. One that maybe starts large, and shrinks down as the
convergence approaches. This concept is known as momentum and in almost all cases is
worth using. Momentum adds a second parameter, γ to SGD such that α decreases at a rate
proportional to γ with each iteration. Different flavors of SGD use momentum and other
tricks to effectively speed up convergence without overshooting it. As with most neural net
parameter choices, the best SGD variant and best parameters are very much dependent on
the problem and the dataset. Therefore it is often best to try a few and stick with one that
seems to train fast while not sacrificing accuracy.
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Fig. 8.6: Various common
optimizers applied
to the same dataset
and trained for 200
iterations [41].

Plotting training curves is a common way to benchmark var-
ious neural net parameter choices as it conveys the training
speed, as well as ability to learn. In a training curve, the
loss is typically the y axis and the iteration (proportional to
training time) is the x axis. Over time, the loss is expected to
converge to some limit, hopefully close to 0 or at least lower
than where it started. Loss typically decays exponentially as
the weights are adjusted to be in the ballpark, but then sub-
tle tweaks continue to widdle down the loss. Eventually, the
loss somewhat flat-lines signifying the model’s weights have
converged and the model is no longer learning and probably
overfitting. Figure 8.6 shows the most popular optimizers
applied to the same dataset and shows how choosing the
right optimizer speeds up training significantly.

Adam, the superior optimizer in the illustration, adapts an
intelligent algorithm for adjusting the learning rate and is often preferred [41]. Note
that if the x axis were extrapolated to infinity, it is likely all optimizers would eventually
converge to very similar weights. Therefore, the choice of the best optimizer is mainly a
convenience of training time rather than accuracy, assuming the optimizer is configured to
avoid overshooting the optimal weights.

Reqularization

Similar to classical linear models, it is possible to regularize the weights in the NN. This
effectively controls the capacity of the networks and helps prevent overfitting. Usually,
regularizers are applied on a layer by layer basis, where each layer may be regulated in some
way, or not at all. L1 and L2 normalization can be applied to the weights just as in Classical
Machine Learning and in effect prioritizes productive weights over weights that do not seem
to impact the big picture prediction. In L2, weights are often linearly decayed to approach
0, while L1 will explicitly remove weights by permanently setting them to 0. Usually, L2 is
preferred as it is more flexible.

Dropout is an extremely effective, simple and recently introduced regularization technique
that complements the other regularization methods. While training, dropout randomly
disables neurons based on a probability, p for a single iteration [80]. This essentially forces
the NN to learn to perform without relying too heavily on specific neurons, or weights and
thus prevents overfitting. This work utilizes dropout on nearly every hidden layer in the
proposed networks.
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Batch Normalization
A technique called Batch Normalization (BN) at a high level helps neural networks initialize
by explicitly forcing the activations throughout a network to take on a unit Gaussian
distribution at the beginning of the training. It has become standard practice to perform BN
right before the activation function of each layer and it is done in this work as well [37].

Conclusion
In summary, training a neural net boils down to methodically passing the input through a
series of layers which contain neurons tuned to extract specific types of features or patterns
useful for solving the problem. These neurons are tuned by their weights which are updated
via backpropagation with each training iteration in a way that ideally reduces the loss or
prediction error over time. The optimizer dictates how aggressively the weights are updated
and there are parameters and trade-offs to consider when configuring the optimizer. The
next section includes a deeper dive into what a single neuron does in order to generate an
output from multiple inputs.

8.3.2 Artificial Neurons

Recall from Classical Machine Learning a multidimensional linear regressor applies weights
W to an input X such that: z = f(X) = W TX, where the bias term is baked into the
weights and z is shorthand for the linear operation. Neurons use this same linear function
to apply weights to their inputs to obtain an output, but they often are configured to apply
supplemental non-linear operations to z, which are called activation functions. The name
bias, taken from transistor jargon, is similar to the y intercept in linear curve fitting. Another
way to think about bias is that it is used to set the default behavior of the neuron (fire a
0 or 1), irrespective of the weights. A high bias makes the neuron require a larger input
to output a 1, and a lower one conversely makes it easier. After training, each neuron has
tuned weights which convey the relative importance of each separate input, and a single
tuned bias value which dictates the neurons default behavior.

The activation function is analogous to the rate of action potential firing in the brain. The
activation function starts with the weighted sum, z, then transforms it once more usually in
a non-linear manner. Many activation functions have been proposed and common ones are
shown in Figure 8.7. One important rule is for activation functions to be differentiable. In
fact, any operation performed in a multi-layered NN must be differentiable. This requirement
is fundamental in allowing the NN weights to be updated after a training iteration as the
update rule relies on gradient descent which requires that every neuron based transformation
be differentiated. The two activation functions used in this work will be described in detail:
sigmoid and rectified linear unit (ReLU). Also note that the simplest activation function, a
linear activation, simply outputs z as is.
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Sigmoid

Historically the sigmoid, also called the logistic function, is the oldest and most popular
activation function. It is named after it’s "S" shape and it is clear from Figure 8.7 that the
sigmoid acts as a sort of “squashing” function, condensing the previously unbounded output,
z to the range 0 to 1. When z outputs a 0, the sigmoid maps that to 0.5. Infinitely large z
outputs are saturated to 1 and infinitely small, 0, thanks to the e−z term. Sigmoid activation
is used extensively in binary classification as it conveniently outputs a probability between
0 and 1 as an output. Note, the softmax activation is a generalized variant of sigmoid to
support outputting probabilities in a multi-class classification task. The sigmoid and softmax
functions are also used to convert a classical linear regression to logistic regression for
classification explained in the Classical Machine Learning section. Similarly, the Tan and
ArcTan functions are also used for their sigmoidal shape, although these functions bottom
out at or near -1.

Sigmoid activations were the basis of most neural networks for decades, but in recent years,
with the advent of DNNs, they have fallen out of favor for layers other than the final output.
The reason for this is when many layers with sigmoids are stacked and differentiated in
order to update the weights, the gradient result tends to be very small. The magnitude of
the gradients is proportional to the change in the weights, so a small gradient means the
weights hardly update after a training iteration, i.e., the NN doesn’t learn. This problem
is widely known as the vanishing gradient problem. One of the breakthroughs in ALexNet
was to replace sigmoid with ReLU as an activation function for most layers which effectively
solves the vanishing gradient problem and allows DNN’s to be trained effectively.

Rctified Linear Unit (ReLU)

ReLU’s also borrow vernacular from the world of semiconductors as "rectified" is commonly
used to describe diode behavior and a ReLU behaves very similarly to an ideal diode [64].
ReLUs let all positive values pass through unchanged, but sets any negative value to 0. This
treats the vanishing gradient problem as the output of a ReLU is only bounded on the low
end, so the gradient has room to breathe. ReLU is also incredibly efficient to compute as
there is no arithmetic that needs to be done, simply a single max(0, z) comparison. There are
several improvements to the ReLU that do marginally better at the cost of sacrificing some
computational efficiency. These improvements, PReLU and ELU along with the original ReLU
are shown in Figure 8.7. The main benefit of the ReLU variants is to allow more freedom in
the lower values z outputs as they are not set to 0. Similar to loss functions, there is very
little theory to support choosing an optimal activation function and preference is instead
based on empirical results from various datasets. In this work, ELU was found to train better,
although slightly slower, so it is used instead.
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Fig. 8.7: Common activation functions as well as their derivatives where the activation function is
expressed as f(x) rather than f(z). Note, some of them limit the min or max input value
and all are differentiable

Conclusion
In summary, an artificial neuron on its own is not all that complicated. It simply applies
a differentiable transform to the standard linear weighted sum of the inputs to obtain a
single output. In other words, a series of inputs come from the neurons of the previous
layer, the weighted sum of them expresses them as a single number, and the activation
function morphs this number in a non-linear way. These differentiable transforms, known
as activation functions, have different use cases and properties. Some such as sigmoids,
conveniently output a probability while others such as ReLU serve as solutions to problems
that prevent DNNs from scaling. Every training iteration, the weights, and bias of the neuron
are adjusted depending on the error gradient resulting from gradient descent.

8.3.3 Architectures

Now that all the building blocks of neural nets have been established, it is possible to discuss
the architectures which piece together neurons and layers to best expose the power of
neural networks. It will be shown that combining multiple architectures and building blocks
typically result in the best performing NN models. This section wraps up the neural network
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and machine learning background and aims to bring together everything discussed related
to neural nets so that it can be applied to real-world problem-solving.

Perceptron
The perceptron is the first version of a neural net and essentially resembles a single neuron
with a step function for the activation function which either outputs a 1 or 0. Perceptrons
have a much simpler update rule and do not require backpropagation, nor a differentiable
activation function. Modern artificial neurons, while mostly the same as perceptrons, have
more complicated update functions and support other differentiable activation functions
such as sigmoid or ReLU.

Fully Connected
A fully connected network (FCN) defines the type of multi-layered network that has been
discussed so far. FCNs consist of N hidden, fully connected layers where each layer has a
specified number of nodes or neurons as a parameter. The FCN can be considered deep when
N > 2, although "deep" is more of a marketing term rather than a prescribed property. It is
typical for the hidden layers to either have the same number of nodes in each layer (as in
Figure 8.8) or for them to decrease (i.e., halve) each layer forming a pyramid-like structure.
A FCN by itself is not a very powerful feature extractor and is typically used with manually
extracted features. It is also very common to use a FCN as the last layer or two of a more
complex architecture such as those listed below.

Fig. 8.8: Fully connected neural network examples showing a shallow single layer (A) and a "deep"
three layer variant (B)

8.3.4 Convolutional Neural Networks

Convolutional neural nets (CNN), sometimes called conv nets, have become standard for
automatic feature extraction in images and spectrograms as they scale and perform better
than FCNs. The reason: as the size of the input image increases, the number of FCN weights
needed at the input layer increases substantially as well. This creates a bloated, inefficient
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and prone to overfitting FCN. CNNs customize the architecture to support images in a
practical way. The standard architecture is inspired by LeNet which was first proposed in the
90s and also uses many concepts from AlexNet [48, 43]. CNNs are as complicated as they
are powerful, so several new concepts will be introduced in this section so the architecture
can be understood.

First, recall an image is a 3D matrix consisting of a depth equal to 3 channels (RGB) with
each channel representing a matrix matching the pixel dimensions of the image. The shape
of a normal color image is thus: (height x width x 3). A spectrogram only has a depth of one
which defines the magnitude of each pixel and has a shape of: (frequency x time x 1). When
discussing CNNs it is easier to think of the layers as 3D cubic volumes, or block layers rather
than 2D matrices or 1D vectors. CNNs introduce another type of layer called a convolutional
layer (conv layer for short) that differs from a fully connected layer in that it handles inputs
and outputs in the form of volumes rather than vectors.

CNNs are in some ways influenced by the human brain’s visual cortex in the sense they
both extract patterns from images in order to perceive what is in the image. The dog breed
detection example in the last section describes the high-level nature of how successive conv
layers extract features, not far off from the visual cortex. As stated in the dog example, the
extracted features start basic and become more complex as they approach the final layer.
This is a byproduct of the standard CNN architecture. The architecture typically starts with
a large, but thin (depth wise) input layer, such as an image with shape (500 x 500 x 3).
Each successive conv layer applies various filters in order to extract relevant information.
This elongates the depth dimension as several alternative representations of the input are
generated through convolving multiple trainable filter kernels with the input and passing
the result through an activation function like ReLU. Following a conv layer, a pooling layer
reduces the h x w dimensions to make up for the increase in depth and keep the total volume
from getting too large. Pooling will not be covered further, but it essentially downscales h x
w by taking the max or average of small patches distributed across the image. Usually, there
are multiple conv + pool layers which continue to reduce h x w and increase depth. The last
conv layer might have a shape of (5 x 5 x 300) and rather than representing the original
(500 x 500 x 3) pixels in the image, it now describes 300 (5 x 5) image feature maps. Each
feature map represents an image-based feature the CNN has learned to extract through its
tuned image filters (also called kernels).

Following the last conv layer, it is common to perform the classification or regression step on
these automatically extracted feature maps using one or more fully connected layers. This is
essentially done by attaching an FCN onto the end of the CNN. More specifically, the 3D conv
layer is flattened to a 1D vector using some form of averaging or reshaping, then treated as
the input layer for the FCN. An example CNN architecture diagram is shown in Figure 8.9.
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It is typical for the conv layers to form a pyramid-like structure as they grow in depth and
shrink h x w.

Fig. 8.9: Standard convolutional neural net for image feature extraction in order to classify objects

The process of "convolving multiple trainable filter kernels" mentioned above is what does
the heavy lifting in a conv layer, so it will be explained more thoroughly. When configuring
a conv layer, a few parameters must specified: the input volume shape (h x w x din), the
desired output depth, dout (single number) and the filter kernel size (k1 x k2). The input
shape is defined by the previous layer, but dout and (k1 x k2) are configurable parameters.
The depth specifies how many feature maps are created from the input, usually between
16 and 512. The filter size is typically a small square (k = k1 = k2) and k is usually odd
to ensure there is a center pixel. Usually filters sizes range from 3 < k < 13. Every filter is
small spatially (along width and height), but extends through the full depth of the input
volume, therefore the depth part of the filter is not configurable as it must match the din. To
obtain the output volume of the conv layer, a total of dout filters are convolved with the input
volume to create a total of dout 2D feature maps which usually have the same h x w as the
input. The feature map represents the response of the filter kernel applied to each spatial
position of the input and each pixel in the feature map functionally represents a weighted
combination of the spatially equivalent pixel in the input image, as well as the neighboring
pixels. More neighboring pixels are considered as k is increased. An example of the feature
map created from convolving a filter with an input image is shown in Figure 8.10.

In a FCN, each neuron receives information from every neuron in the previous layer. Given
the much larger volume of CNNs, it is impractical to connect neurons to all neurons in
the previous volume. For this reason, each neuron has a receptive field that is the size
of k which narrows its focus to a specific spatial region of the input volume, rather than
the whole thing. There is a neuron for each spatial pixel in generated feature maps. The
specific way backpropagation updates the filter weights will not be covered as it involves
complicated details to make the process efficient. Essentially, for a given conv layer, with
d feature maps there are k*k weights required for each feature map, so d*k*k weights per
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Fig. 8.10: Example showing the feature map that results from convolving a filter kernel with an
input image. The 3x3 filter kernel effectively extracts the edges of the input when applied

conv layer. Therefore after training the CNN, each layer has d trained filters that each extract
a different feature map from the input volume.

An example showing how the complexity of the features evolve as the layers get progressively
deeper is illustrated in Figure 8.11. These features were trained for facial recognition using
a Convolutional Deep Belief Network which is a specific variant of a CNN [49]. The final
extracted features which are passed to the FCN at the end of the network capture incredibly
specific details such as facial hair, nose to eye ratios and facial hair. The CNN effectively
expresses an input face as a weighted combination of each feature in the final layer and
passes that to the FCN which must simply connect this weighted combination with the
associated label, or in this case identity. Clearly, the CNN is doing most of the work. So far all

Fig. 8.11: Types of features extracted at various layers in a convolutional neural net trained on faces.

examples have been related to image input, but as mentioned, other 3D inputs can be used,
such as radar or sound data expressed as a spectrogram. Using alternative inputs is much
less common, and still being actively researched. Unlike images, spectrogram dimensions
have meaning more significant than height and width, namely one dimension represents
time, and the other frequency. As covered in the Sound Background chapter, a great deal can
be interpreted from a spectrogram, and CNNs certainly have the power to extract whatever
it finds useful. While the extracted feature maps may be less intuitive than the faces in
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Figure 8.11, they have been shown to perform well at tasks such as sound classification
and this work will show the effectiveness of CNNs for extracting flow from sound [76].
Usually, the trained filters expose the existence (or lack thereof) of certain impulsive sounds
or background, drone sounds. There are some nonideal properties of CNNs that prevent
them from understanding higher level patterns within a spectrogram that humans can easily
spot, but when the sound is not rhythmic this is less of a problem. It will be shown in the
next section, that there are better architectures to use when the input is a time series with
an embedded pattern.

CNNs biggest limitation is that it tends to create a black box model. Unlike classical machine
learning where the relative impact or importance of the input features can be quantified,
in CNNs and NNs in general, it is difficult to know which features are being extracted and
how they are being used. This is the downside to employing millions of neurons to solve
a problem. There are attempts to explain a CNN model by looking at the feature maps, as
shown above, but it is still largely a research topic and not very well understood. There are
several examples where the NN learns to cheat by exposing a flaw in the data rather than
solving the actual problem. In this work, for example, a NN was found to be remarkably
accurate at tracking the speed of fan powered airflow. Unfortunately, it turned out to be
using the pitch of the humming, or resonance frequency as the predictor for speed, not the
actual sound of airflow. This was quickly realized when it utterly failed to work on a different
fan or human-powered airflow. As Uncle Ben advised Spiderman, "With great power comes
great responsibility", and it is unfortunately up to the engineer to be responsible, at least
until an AI is built to handle that part too.

CNN Conclusion

As mentioned earlier, the 2012 explosion of DNNs can be attributed to a massive influx
of image data, AlexNet, and powerful, ubiquitous GPUs. AlexNet was essentially the CNN
architecture described in this section with a pyramid-shaped stacking of conv layers. The
GPUs were necessary as they are optimized to perform filter convolutions on images (this is
required in video game rendering too). Combining GPUs was the key to AlexNet as it allowed
very large volumes to be processed at each layer which yielded a massive amount of features
capable of achieving a miraculously low error rate on the substantial ImageNet dataset. From
then on, the research in CNNs has exploded and has recently found its way into products
such as photo apps and autonomous cars. The next architecture, Recurrent Neural Networks
(RNN), has undergone a similar explosion in the last decade but for different reasons than
the CNN. The RNN is less relevant in this work, so it will only be covered from a broad
perspective.
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8.3.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) have been a staple for sequential data processing such as
language translation or speech recognition. In a traditional neural network, the assumption
is that all inputs (and outputs) are independent of each other, but for many tasks, that
assumption is very limiting. When predicting the next word in a sentence it is essential to
know which words came before it, not just the last word, but the last few. RNNs are called
recurrent because they perform the same task for every element of a sequence and each
successive output is dependent on the previous computations.

Back to the brain analogy, RNNs have "memory" which captures information about what has
been observed so far. Like the human brain, the memory is not unlimited due to storage
capacity, so there must be a decision rule for deciding what to remember and what to purge
so new information can replace it. A few RNN variants have become popular due to the way
they handle old and new memories. RNNs are similar in concept to a memory cell, which has
gates that allow new memories in and to reset or clear old memories. The two most popular
variants are the Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU) [33,
14]. Unmodified RNNs are also particularly susceptible to the vanishing gradient problem
covered earlier, which is alleviated by these variants because they constantly update and
reset their memory preventing it from falling into a stagnant state. A typical RNN structure
is shown in Figure 8.12. The main takeaway is the previous inputs are stored and used to
make predictions for future inputs.

Fig. 8.12: Standard recurrent neural network architecture, when unfolded it reveals the previous
states can be recalled, the labels are not important for this example.

The key difference between a GRU and an LSTM is that a GRU has two gates (reset and
update gates) whereas an LSTM has three gates (input, output and forget gates). The newer
GRU unit controls the flow of information like the LSTM unit, but without having to use a
memory unit. It exposes the full hidden content without any control. GRU’s are generally
preferred as they are usually on par with LSTMS, but are simpler to understand and perform
better with less data. LSTMs should, in theory, remember longer sequences than GRUs and
outperform them in tasks requiring modeling long-distance relations, but it seems empirically

108 Chapter 8 Machine Learning Background



this does not hold up. Figure 8.13, shows the different structure of LSTM and GRU cells.
The details are presented in the source paper and will not be covered here.

Fig. 8.13: Comparison of Long Short Term Memory and Gated Recurrent Unit cells

RNNs and their powerful variants have been shown to successfully understand, translate and
generate written text. They have also demonstrated an ability to label and caption images
and recognize recorded speech audio. Most personal assistants like Amazon’s Alexa, rely on
some form of an RNN to listen to a request, then reply with synthetic speech. When images
and audio are the input, it is typical to use a CNN to extract features, then an RNN in place
of an FCN to process the CNN features in a sequence order. Using an RNN in place of a FCN
for sound has an added benefit of learning how the amplitude and frequency varies across
time which is incredibly useful for real-time or rhythmic sound. This combination is usually
referred to as a convolution recurrent neural network (CRNN) and it is explored in this work
as a potential solution for airflow to sound.

Conclusion
The architectures presented are merely scratching the surface in terms of the multitude of
approaches artificial neurons can be arranged to solve problems. The depth of the concepts
covered is somewhat related to its utility in this research. In summary, FCNs are multi-layered
basic neural nets and are ideal when manual features have been extracted, or are simple to
extract. CNNs have the ability to automatically extract complex information from 3D input
volumes. They are often fed into FCNs which then perform the classification or regression
steps on the automatically extracted features. CNNs are limited when it comes to sequence
data, so RNNs are often employed as they possess the ability to remember patterns and
information from previous data. The feature extraction of a CNN can be combined with the
pattern recognition of an RNN to create a powerful hybrid architecture known as a CRNN.
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8.4 Conclusion

This chapter has been a whirlwind of approaches designed to learn predictive models from
copious amounts of data. As was shown in Airflow Physics, physics models fall apart when
introduced to the complicated non-ideal properties of reality. Since machine learning relies
on data from reality, it has a competitive edge in terms of learning ways of representing the
physical properties observed through the data. The downside is, they typically require tens
of thousands of data points to learn the necessary relationships.

Machine learning can be broken up into a few categories based on whether or not labeled
data exists. In general, supervised methods require labeled data to learn a transform function
from the input data to the output ground truth. Unsupervised learning is used when data
is unlabeled but may have high-level properties that can be exploited via clustering. The
types of models explored were broken into classical and neural network categories where the
classical methods require manually extracted features and have been used in practice for
decades. On the other hand, deep neural networks recently rose to fame due to the advent of
GPU computing and the existence of extensive datasets. It was shown that DNNs, specifically
CNNs have the powerful ability to automatically extract features from input data, but it is
difficult to know what the extracted features represent and which have the most impact on
the final prediction. For this reason, both classical models and NNs are evaluated in this
work. The intuition is if the CNN does remarkably better, then the manual features are not
painting the complete picture. Contrary, if the manual features exceed the NN performance,
then the NN method is not doing a good job at extracting features.

If the hope was to read this chapter and walk away with the "best" way to apply machine
learning for a problem, then the conclusion is probably fairly disappointing. In machine
learning, there’s something called the "No Free Lunch" theorem. In a nutshell, it states that
no one algorithm works best for every problem. This is especially relevant for supervised
learning. There are clues of when to use one versus another based on the type of input data
or intended model, but in general, the only way to know is to train them all and evaluate
them against each other using a test set.

The following chapters will dive into applying this "machine learning bake-off" to the
spirometry sound dataset with the goal of providing spirometry metrics and curves from
sound input. The Dataset chapter will introduce the dataset as well as some of the limitations
inherent to it, the Methods chapter will outline the proposed machine learning methods
and manual features utilized, and finally the Results chapter will reveal the results of the
bake-off as well as important insights and observations.
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9Related Work

The related work is broken into four sections. First a general overview of similar mobile
health work is presented, followed by a focus on smartphone based spirometry. The third
section is a broad overview of ultrasonic and infrasonic airflow measurement approaches and
the chapter is concluded with an overview of related sound-based deep learning research.
The bulk of the related work stems from the ubiquitous computing, pulmonary health,
acoustical modeling and deep learning communities.

9.1 Mobile Health

The mass adoption of smartphones has led to several innovations related to mobile health
(mHealth). A subset of mHealth research focuses on medical record input and storage in the
form of apps with built-in calculators and access to shared medical databases. Unfortunately,
these services have yet to see widespread use outside of academia [15]. Another active
topic in mHealth which has made it into the commercial world is activity tracking, including
fitness and sleep services. Some of these exist in the form of external wearable hardware
that may interface with a smartphone such as Fitbit, Nike+, and most other smartwatches,
while others, such as Google Fit and Apple Health make use of the accelerometer and GPS
within a smartphone to count steps and track exercise and sleep. These activity tracking
products typically do not claim to offer any clinically relevant information and are therefore
not suitable for clinical use.

Another class of mHealth research focuses on the personal measurement of vital signs and
monitoring of chronic diseases using a smartphone. These are somewhere between non-
clinical activity tracking and gold standard medical devices. They often are presented as
proof of concept ideas that are evaluated on a sample size smaller than 100 patients. Many
non-invasive blood screening apps utilize the camera and accelerometer to measure pulse,
blood pressure, blood oxygens levels, hemoglobin concentration and arterial stiffness [63,
89, 88]. Other vision based apps can screen for exterior health conditions such as jaundice,
melanoma and diabetic wounds [17, 56, 86, 90]. Additionally, a number of apps use the
microphone as a sensor to track respiratory rate, sleep duration, coughing and sneezing
[65, 47]. The majority of these health monitoring apps provide a non-invasive, portable
supplement or replacement to a traditional medical device using only a smartphone. The
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focus of this work is in a similar vein as it aims to sense pulmonary functionality similar to a
spirometer using the microphone of a smartphone. While the approach is novel, the idea has
been floating around in academia for over a decade, as the next section will show.

9.2 Spirometry via Sound

There is a rich history of spirometry products as outlined in Section 4.1, but the prior work
most relevant to this research uses sound as a proxy for airflow and utilizes a smartphone
to record the sound and process the signal. Early publications demonstrating sound-based
smartphone spirometry began emerging around 2011 but required either an external micro-
phone placed at a fixed distance or an external breathing tube [1, 44]. Nonetheless, this work
contributed signal processing techniques for isolating the airflow sound by applying voice
activity detection (VAD) techniques and tracking sound energy versus time. Furthermore,
the early work introduced methods for detecting and classifying common spirometry errors
[29].

Shortly after, in 2012, Larson et al. published SpiroSmart, a sound based spirometry solution
that uses an iPhone microphone and cloud-based processing for portable, accessory-free,
spirometry testing [46]. SpiroSmart is capable of outputting FEV1, FVC, and PEF but did not
specifically evaluate the output of spirometry curves such as flow volume. It achieved an
average error of 4.9% on FEV1, but was only evaluated on 52 patients and had significant
error on the small sample of unhealthy, low FEV1 patients. Other than demonstrating
smartphone sound based spirometry is indeed possible, this work also contributed crucial
signal processing techniques and physical models for measuring the airflow via smartphone
microphone. Furthermore, it spawned the global data collection effort that resulted in the
dataset used in this work.

Since the genesis of SpiroSmart, many other versions have been proposed with the same
objective but different processing techniques as the solutions. These variants are evaluated
on less than 50 healthy college student participants, so the error metrics must be taken
with a grain of salt. In 2013, Xu et al. designed and developed an Android mobile phone
application for lung function diagnosis called mCOPD which measures FVC and FEV1 using
the microphone. They evaluated mCOPD on 40 patients and obtained an FEV1 percent error
of 6.1%. The processing algorithm was much simpler than SpiroSmart as it was simply a
linear mapping from sound energy to wind speed from which FEV1 and FVC are derived
[92]. Recently, in 2017, Zubaydi et al. demonstrated an Android-based COPD management
app very similar to mCOPD [95]. It utilizes a tuned quadratic formula to converts sound
energy versus time into flow versus time and achieves an FEV1 average percent error of 3.5%
on 25 subjects. So far the work that has followed SpiroSmart has used smaller, less diverse
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sample sizes while offering minimal improvements error wise. The processing algorithms,
however, are much more straightforward and intuitive.

SpiroCall, published in 2016 by Goel et al., while a direct descendant to SpiroSmart, offers a
fresh twist to mobile spirometry by enabling the transmission of spirometry efforts over a
standard cell phone line rather than an internet enabled smartphone. This effectively enables
a much needed portable spirometry solution in developing countries. This work evaluated
the technique on several phones and also introduces a vortex whistle which converts the
airflow into sound, making it easier to capture and process the spirometry effort. They
evaluated the proposed methods on a good balance of 50 patients and achieved around
8% FEV1 percent error without a whistle and around 5% with it. They also demonstrated
the whistle was capable of producing accurate flow versus time curve, although did not
sufficiently evaluate it.

While the main objective of this work as well as the work mentioned in this section so far
is to predict spirometry metrics, there has also been substantial work around classifying
spirometry errors, both from the flow volume curve and from the sound itself. In 2014,
Melia et al. demonstrated an automated feature-based method for detecting four common
spirometry errors, this work was recently improved on by Luo et al. which used a subset
of the dataset used in this work [59, 54]. Finally, early results of the Confidence model
outlined later in this work are being published by Viswanath et al., which show spirometry
error detection is possible from just the sound of the exhale.

9.3 Airflow via Inaudible Sound

Another goal of this work is to explore airflow sensing using infrasound and ultrasound
in addition to audible sound. Unlike the work of the last section, the work in this section
takes more of a physics-based approach to modeling as opposed to data-driven. The physical
modeling is covered in depth in Section 7.2.

Much of the prior work in measuring wind speed relies on multiple microphones such that
differences in phase can be mapped to wind speed [8, 26]. Other work, dating back to
the 1970’s leverages the infrasonic vibrations caused by natural wind flow to measure the
velocity [87, 58, 11]. Raine et al. demonstrated it is possible to measure air velocity in an
air conditioning duct using a specialized ultrasonic setup [71]. Ultrasound is also utilized in
active research for breathing monitoring, specifically for sleeping subjects when motion is
assumed to be minimal [4]. This work mostly tracks the chest and mouth movements rather
than the airflow so it does not investigate the velocity of the air. None of these infrasonic
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and ultrasonic applications, however, have been shown to work on a smartphone as they
require specialized, calibrated hardware.

9.4 Deep Learning

The most promising methods in this work stem from recent advancements in deep learning,
specifically in the sound domain. Unlike vision based deep learning, sound is not nearly as
well explored outside of speech, although it is gaining significant momentum. General deep
learning advances and pivotal work is covered in depth in Section 8.3.

The publishing of the 8k urban sound dataset by Salamon et al. spawned several innovative
neural network architectures designed to classify and understand sound, including the deep
learning CNN based method later published by the dataset creators [77, 76]. Parascandolo
et al. build on this concept and offer accuracy improvements by including recurrent layers
in addition to the feature extracting convolutional layers to extract time-varying patterns,
known as a CRNN [69]. More recent work has shown a custom type of convolutional layer
known as a "gated" variant can outperform standard convolutional layers in sound-based
feature extraction [93]. All of these methods are explored in this work, although no prior
deep learning work is focused on airflow or spirometry was discovered.

This year, Google published a massive Youtube based labeled audio dataset known as
Audioset which has over 500 different labels, including coughs, sneezes and throat clearing
[23]. This has spawned new conferences and competitions around sound detection and
will no doubt result in groundbreaking innovation similar to the effect ImageNet had on
vision-based detection.
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10Experiments

„No amount of experimentation can ever prove me
right; a single experiment can prove me wrong.

— Albert Einstein

In order to support and validate the research and ideas presented in this thesis, a number
of experiments were performed. The experiments are briefly documented and listed in
chronological order.

10.1 Airflow

The following preliminary experiments on airflow and and airflow measurement with a
MEMs microphone provided important insights into the difficulty of building a physics-based
model.

10.1.1 Constant Airflow

The first experiment, conducted in the context of airflow physical modeling, explores using
linear models to track constant airflow. The setup involved a computer fan and the speed
was modulated simply by controlling the input voltage to the fan. The airflow at each
voltage setting was measured 1 foot away using a hand-held anemometer. The voltage speed
mapping was indeed linear, which confirmed modulating the voltage had the same effect as
modulating the airflow in close proximity. This relationship is shown in Figure A 10.1. The
measured airflow speed ranged from 1 to 2.5 m/s.

Following the confirmation that airspeed is linearly proportional to fan voltage, a smartphone
was set up to record the sound of constant flow at each voltage setting. A simple algorithm
was developed to average the sound into loudness bins, then a simple linear fit was computed
to estimate the fan speed from the loudness bins in real time. The linear mapping is of the
form:

Vair = mL̄+ b (10.1)
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where L̄ is the average loudness of a small, 100ms audio segment and Vair is the velocity
of air measured 1 foot away along the centerline of the fan in m/s. Empirically, m was
computed to be 4.54 and b, 46.17. It was also found this model is relatively distance
independent over the range of 0.5 - 2.0 feet, as long as the audio is normalized. This suggests
normalization corrects for distance, assuming the SNR is high enough. The results from
testing this transform are shown in Figure B of 10.1. The findings suggest constant airflow
can be tracked via sound fairly easily assuming the phone, distance, and fan are consistent.

Fig. 10.1: Results of the constant airspeed from sound experiment. A) show the linear speed voltage
mapping and B) shows the mapping works in real-time airspeed tracking

More complex machine learning models were trained on spectrogram representations, but
the models clearly were learning the speed from the resonance frequency of the fan, which
was clearly viable in the spectrogram. For this reason, only amplitude based methods were
used to model fan airflow. This is one of many examples where neural networks learn
to cheat rather than solve the problem in the intended way. Future efforts to use neural
networks, were approached more carefully as to avoid this type of unexpected behavior.

10.1.2 Electro-Mechanical Lung

This experiment involves the design of a blower fan powered airflow generator with the
purpose of supporting various data collection efforts. The design is inspired by the human
respiratory system and built with components found at a local hardware store. It utilizes
a standard four-wire pulse width modulation (PWM) controllable blower fan which is
controlled using an Arduino with a custom, high PWM capable, firmware. The fan output is
directed into an expandable mylar bag which acts as a poor substitute for the lung. The other
end of the mylar bag is connected to a flow control valve which functions as an obstructive
lung disorder proxy. The valve is connected to corrugated plastic tubing which is about the
lengths and texture of a trachea. This 4 inch trachea substitute is connected to smoother
tubing which is about 8 inches and emulates the rest of the respiratory piping up to the
mouth orifice. Flow modeling efforts utilizing this device debunked the results of the first
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constant airflow experiments as it showed the model fails when exposed to non-constant, or
rapidly changing airflow. This result motived the transition from physics based models to
machine learning models.

ATS Waveforms
The other purpose of this devices was to generate similar airflow curves to a $10000 American
Thoracic Society (ATS) waveform generator. Sound and flow data were collected from a
local ATS certified flow generator located at the Seattle Children’s Hospital. This device is
similar to what is used to certify spirometers and has a very accurate flow output, based
on the human respiratory system. It can replicate the 26 ATS verified waveforms used for
calibrating spirometers and has the capabilities of simulating obstructive and restrictive
behavior and many other common patterns. The Arduino electro-mechanical lung is far
less accurate and useful compared to the ATS flow generator, but it does provide similar
functionality suitable for experimentation at significantly lower costs.

10.1.3 Ultrasonic Airflow

Prior work has confirmed it is feasible to measure hand motions via ultrasonic Doppler
shift using only a laptop [30]. Additional work has also shown embedded hardware can be
designed to measure the constant airflow in an air conditioning duct [71]. In an effort to
combine these ideas and measure human airflow, a simple web-based app was developed to
facilitate ultrasonic motion experimentation.

This app uses laptop’s speakers to broadcast an inaudible 20kHz sine wave, which is then
received by the laptop microphone. Any motions or fluctuations in the air manifest as subtle
frequency shifts which can be picked up by the microphone as it can compare the broadcasted
signal to the measured one. Using the Doppler shift principle, these frequency shifts can be
transformed into relative motion vectors which have a magnitude and an angle.

The app successfully implements this theory and plots the motion magnitude versus time in
real-time. The app is very useful as a learning tool and a data collection tool. It includes
functions to tweak the ultrasonic frequency or play an audible sound that correlates to the
motion magnitude, effectively turning a laptop into a motion-based Theremin style instru-
ment. The app has been tested in the Chrome browser on a 15" Macbook pro but also works
on other laptops with stereo speakers and a center-mounted microphone. Unfortunately, it
does not work on a phone yet.

The code is open source so others can build ultrasonic functionality into their websites. A
simple demo is accessible at (start with low volume): https://jake-g.github.io/spiro-doppler/,
and an example of the user interface is shown in Figure 10.2.
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Fig. 10.2: A screenshot of the open source ultrasonic Doppler based motion magnitude visualizer

This app was originally built to support experimenting with this concept as a potential
method for measuring forced exhale airflow on a smartphone as either a replacement or
supplement to the audible sound methods covered in this work. Ultrasonic measurement is
attractive as external audible noise will not affect the measurement. The downside is that
motion is a form of noise in this sensing technique and difficult to control, especially if the
user is holding the phone. Preliminary experiments show it may be possible to measure
airflow, but it is difficult to tell whether the movement can be attributed to the airflow or the
movements of the chest muscles or other sources. A more thorough investigation is required
in order to validate this technique for use in spirometry.

10.2 Spirometry

These experiments were conducted to gain a better understanding about spirometry mea-
surement techniques as well as provide software and tools for future experiments.

10.2.1 DIY $30 Spirometer

In an effort to learn more about airflow sensing and spirometry, as well as obtain a real-time
exhale flow recorder, a DIY spirometer was designed, built and calibrated. The design
requires a NXP differential pressure sensor ($10), a 16-bit ADC ($5) and an Arduino ($10).
Disposable mouthpieces can be connected to the pressure sensor and the assembly can be
used as a traditional spirometer. The prototype is shown in Figure A of 10.3 and has been
open sourced.
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Fig. 10.3: (A) shows a prototype of the $30 DIY Spirometer and (B) is an example screenshot of the
feedback tool for the Human Airflow study. The user is instructed to try to exhale such
that the ball is centered on the horizontal line.

10.3 Deep Learning

While only the top models are evaluated in Chapter 13, there were hundreds of variants that
didn’t make the cut. Since January of 2018, a GPU machine has been running parameter
tuning optimizations for the deep learning models. A simple genetic search algorithm is
used to automatically adjust the architecture parameters on a weekly basis with the hopes
of finding an architecture that works best. It is in a way using semi-supervised machine
learning to optimize supervised machine learning. The process is mostly automated other
than defining the range of the parameter sweep every week and checking the results. Simple
power calculations estimate the electricity cost of training 24/7 since January amount to
about $50 , or $5 per month. Figure 10.3 shows ten days worth of experimentation for
the final refinement of CurveNet. Many of these converge to around the same loss by 200
iterations, but earlier in the process, the results were incredibly variable. At this point, in
May, the architecture is fairly well defined and only small changes are made between training
sessions. Note, the curves are smoothed and the faint silhouette allude to the much noisier
source plots.
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Fig. 10.4: Represents 10 days of CurveNet experiments. The plot shows the loss relative to training
iterations. Most models converge to around the same point, but the speed and final
accuracy varies.
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11Dataset

„It is a capital mistake to theorize before one has data.

— Sherlock Holmes

In any machine learning problem, the key to building a generalized, accurate model lies in
the dataset. Creating and organizing a dataset is often the most time consuming, tedious part
of a data-driven problem, and often has huge impacts on the outcome. Even the best models
are crippled by poorly organized or mislabeled data. This chapter describes the monotonous
but important process of cleaning and organizing the data, which took up approximately
one-third of the R&D time.

11.1 Collection

Motivation
The motivation for exploring machine learning methods to sound-based spirometry stemmed
from the massive amount of existing exhale sounds and ground truth spirometer data.
This data was collected in a joint effort between the original SpiroSmart authors, the
Seattle Children Hospital and the Spirometry 360 organization. Through this collaboration,
spirometry data was collected at several clinics in global locations such as Greece, Bangladesh,
and Russia. In addition to collecting ground truth data, an iPhone app built to record the
sound of a forced expiratory effort was deployed and used in conjunction with the traditional
spirometry data collection procedure. The main goal of this global effort was to build a large
dataset to be used for developing a sound-based spirometry model, among other things.
Today, the dataset is comprised of approximately 40,000 entries from 8000 unique patients
collected at numerous clinics. One of the main challenges in this research is unifying the
data from various clinics with different protocols and timezones into one cohesive dataset
suitable for machine learning. The following chapter outlines the data collection procedure
and the steps taken to unify the dataset, along with the issues encountered along the way
and finally, the key dataset statistics and observations.

Procedure
Data is collected in terms of sessions which is a collection of trials for a given patient.
Sessions are generally separated by days or weeks. In a typical session, a trained clinician
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first instructs and coaches the patient on the breathing maneuver and the patient is given
an opportunity to practice. The instructions follow the best practices and guidelines for a
spirometry maneuver outlined in Chapter 5 Spirometry. When ready, the patient performs
the maneuver into an EasyOne Spirometer and the result is stored internally. Following
the first successful trial, the patient is introduced to the SprioSmart data collection app
and instructed to perform the exact same spirometry maneuver except into the smartphone.
Some additional restrictions are in place to help improve the quality of the data collected.
For example, the clinician instructs the patient to hold the phone an arm’s length away
from their mouth, so the phone is parallel to their face. Furthermore, they are instructed to
position the phone with the screen facing them and level with their mouth. The SpiroSmart
app stores the raw audio and other patient metadata into a SQL database, utilizing the
phone’s internet to upload to the SpiroSmart server.

The patient is given some time to rest between efforts to avoid breathing fatigue. Once
a session is completed, the clinician makes sure the SpiroSmart data is uploaded to the
SpiroSmart SQL database and the EasyOne ground truth data is uploaded to a separate
Spirometry 360 FRS database. The study protocol calls for 5 ground truth EasyOne trials and
at least 3 SpiroSmart audio trials, although this is heavily dependent on the patients’ health
and cooperation. As a result, there is an inconstant number of trials in differing sessions and
therefore, not always a one to one mapping between EasyOne ground truth and SpiroSmart
audio. Additionally, there is variation among different clinics as their respective data
collection procedures differ immensely and do not always follow the recommended protocol.
All of this results in a complex chaotic dataset in desperate need of some organization and
cleansing.

11.2 Interpretation

In order to sufficiently outline the cleansing of the dataset, a foundation of what the dataset
is comprised of and how it is structured is necessary. First, recall a session is a unique set of
trials for a given patient and within a trial, ground truth data, as well as experimental audio
data, is collected. Sessions occur one at a time at a given clinic, but different clinics may run
different sessions in parallel. Finally, each clinic has a set of smartphones for collecting data.
The following unique identifiers are introduced to keep track of all of these concepts; patient
id (PID), clinic id (CID), spirometer id and device id. Unfortunately, the PID is not guaranteed
to be unique because different clinics may create the same PID for different patients. All
spirometer and device ids are fixed before data is collected to avoid similar conflicts. To
keep track of sessions for a given PID, session id (SID) is used and for ground truth within a
session, trial id (TID) counters are used. Similarly, for the audio data in a session, an audio
id (KID) counter is employed. See Figure 11.1 for an illustration of how the various ids are
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applied to the dataset. It is important to understand the nested nature of the ids in order to
follow what is to come.

Fig. 11.1: Illustrates the hierarchical nature of the data, every child inherits the ids from it’s direct
parent so a given audio recording (KID) should link to a session (SID), patient (PID) and
clinic (CID)

SQL Tables
Clearly, there is an inherent complexity to the way the data is collected and unsurprisingly
this complexity exists in the way the data is stored as well. Several years ago, the pioneering
authors of the original SpiroSmart paper deployed a SQL based database schema to store all
of the essential data in a way that made sense and fit with the research being conducted at
the time. Several distinct tables were created to pair device ids and spirometer ids to clinic
ids, match audio trial KIDs to PIDS, and link PIDS to various SIDS and so on. Additionally,
there is a large amount of research-based data that is not relevant to the problem space
presented in this work. The final schema consists of over ten tables that need to be carefully
cross-referenced in a particular way to accurately get the whole picture. It also lacks any
form of documentation. In order to migrate away from the archaic structure of the original
SpiroSmart database, significant work needed to be done to join all of the tables together
into one table complete with all of the information required for developing a new algorithm.
Unfortunately, the critical information necessary for unifying all the relevant info into one
table is missing, for example, there is no obvious way to match a given KID audio recording
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to a SID making it difficult to pair the audio with the ground truth. Since the original authors
are for the most part out of the picture, the best way to solve this discrepancy is to turn to
unsupervised machine learning. In the next section, a clustering algorithm used to unify all
of the SQL tables is presented.

11.3 Clustering

In the initial phase of interpreting the existing data, with the goal of including it all into
one table, some critical issues emerged. These issues, highlighted in the previously can be
summarized into two key points:

i) PIDS are only unique within a clinic. This means that a given PID is not guaranteed to
map to a single patient in the whole set of all clinics.

ii) There is no obvious one to one mapping from audio trials (KID) to ground truth trials
(TID).

Even though audio trials are completed adjacent to ground truth trials, the SIDs only appear
in the table with the ground truth TIDs and not in the table with the audio KIDs. It appeared
impossible to match KIDs to TIDs for patients who had several sessions since it was unclear
which KIDs belonged to which sessions. Furthermore due to issue (i) it was uncertain if KIDs
for a given PID were actually from the same person. Fortunately, the spirometer ground
truth and the audio files have an associated timestamp embedded in them. As long as the
ground truth and audio can be grouped for a given PID, timestamps can be used to match
ground truth with the nearest recorded audio. This solves the issue (ii), but how can the PID
uniqueness issue be solved? It turns out each clinic is more or less in a different country and
the timestamp also contains a timezone which can be used to identify the clinic (assuming
the clinics have patients at reasonable hours in the day). With this insight along with its
reasonable assumptions, all of the conflicts in the database can theoretically be resolved with
some form of grouping by PID and clustering by timestamp/timezone.

Before going into the algorithm that solves this, a concrete example will be presented to
hopefully clarify the insight given in the previous paragraph. Let’s say there are two patients,
Alice and Bob. Alice is visiting a clinic in Greece at noon (2 am PST) and Bob is visiting
a clinic in Seattle at noon PST. Both of these clinics are brand new and they each eagerly
assign their first patient PID=1. This is Alice and Bob’s first session so they are assigned an
SID=1. They will each do five trials where each trial has ground truth TID=[1 to 5] and
audio KID=[6000 to 6005]. After Alice and Bob complete their respective session, their data
is uploaded to the SQL database. Among other things, there is a table that maps their PID
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–> SID –> TID and another table that maps PID –> KID. Now skip ahead a few months, now
each of them has done several sessions at their respective clinic and have multiple sessions.
Assuming the KIDs are counted up each time audio is recorded, there is clearly no easy way
to match a KID to a TID without looking at the timestamp. Similarly if PID=1 is queried,
both Alice and Bob’s results will be returned because the database has no way of knowing
Alice and Bob are different. The query would have to be PID=1 from Seattle or PID=1 from
Greece, but first, it must be known which PIDS visited which clinics. Hopefully, it is now
more clear why timestamps/timezones can help solve these discrepancies.

11.3.1 Algorithm

In this section an algorithmic approach to unifying the data is outlined:

1. Combine: The ten or so SQL tables can be combined into two large, complete tables:

a) Indexed by TID where each row contains all of the ground truth information

b) Indexed by KID where each row contains the audio recording and related infor-
mation

2. Cluster: In order to combine the TID and KID table, a mapping from one to another is
required. Unfortunately, due to issue (i) and (ii) such a mapping does not exist as there
are collisions and missing information that prevent it from being done accurately, so
trials must be grouped into session clusters for both audio trials and ground truth trials.
Then, unsupervised clustering is used to exhaustively generate an acceptable mapping
by grouping audio sessions with ground truth sessions that match chronologically.

3. Squash: The ground truth sessions need to be squashed such that each session is
represented by a single best effort. Standard reproducibility rules are applied and if a
session is not reproducible, it is omitted from the dataset. Note, each audio session
still has multiple audio recordings. So instead of a many to many mapping it is now
many to one.

4. Merge: Following clustering and squashing, the two tables can finally be merged. For
the many KID to one TID mapping, the ground truth is simply copied to each audio
row with a small amount of rounding noise added such that each KID from the same
session has slightly different ground truth. The final unified table is indexed by KID
and each entry has an audio file and respective ground truth.

The clustering processes is explained in detail in the following subsection.

Cluster Ground Truth
Starting with issue (i), conflicting PIDS: the key to matching trials to patients, even when the
same PID is used for two different patients, is timezone. If the patient table for PID=1 has
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ten entries consisting of three different timezones, it can be inferred that PID=1 was used
in three separate clinics and using the location embedded in the timezone, the clinic can
be identified and recorded in a new CID column. This timezone based clustering effectively
solves the issue of conflicting PIDs. The only caveat is to query data for a specific patient,
the PID and CID must be known.

Issue (ii) is more complex, but can benefit from the new CID cite column as now patients
are uniquely identified using the PID and CID. Instead of clustering by timezone since that is
now encoded in CID, the timestamps can instead be used to chronologically sort the trials
for a given patient. Timestamps are then clustered by date and trials occurring on the same
day are considered a session. This may seem redundant since the ground truth has a SID
column, but it was found that many entries were missing this as some clinics omitted or were
unaware of this metric. With these day clusters, each ground truth entry can be assigned
a new SID for each date containing trials and a TID from 1 to a number of trials in that
session. Now the ground truth table is complete, trials are sorted chronologically, bundled
into sessions and mapped to correct patients. All that remains is clustering the audio table
into sessions, then mapping the audio sessions to the ground truth sessions.

Cluster Audio
A similar strategy is employed to apply the concept of sessions to the audio trials. First,
group the KID indexed audio rows by PID, forming patient tables, then use the times-
tamps/timezones to identify the CID, SID and chronological order of audio trials (KIDs).
One challenge specifically with the audio is the timestamp and timezone is not a column in
the audio table like in the case of the ground truth table.

Thankfully, the audio file itself has an embedded date created tag, so each file had to
be downloaded and analyzed to obtain the timestamp. This timestamp is in Coordinated
Universal Time (UTC) so it can be used for chronologically ordering the data, but is not useful
for inferring the CID since UTC is the timezone for all audio. This is where unsupervised
learning comes into play. The manual way to sort this out would be to convert the UTC time
to each timezone for all of the clinics, then see which timezone conversion fits best with
the time of the ground truth trials. This is very tedious to do manually as there are several
thousand PID collisions each containing several trials that would need to be cross-referenced.
For this reason, the following unsupervised clustering approach is employed.

Unsupervised Clustering
The exact steps of the manual method explained above can be used to define a machine
learning problem. Essentially when a CID is unknown, all the relevant timezones need to
be applied to the audio timestamps and then compared to the ground truth time which
already has the timezone applied. The machine learning model needs to choose the timezone
that minimizes the time delta or error between the known ground truth trial times and
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the unknown audio UTC timestamp. It is presumed the correct timezone will result in a
timestamp that is close to the ground truth trial times (i.e., small time delta within 30 min)
since audio recordings occur in series with the ground truth samples. Conversely, incorrect
timezones will result in a timestamp that is far away from the ground truth time. Upon
applying the machine learning strategy, each KID will have a proposed timezone which when
applied to the audio’s UTC timestamp should minimize the time delta between the audio
trial time, tA and ground truth trial time, tG. Equation 11.1 below shows the cost function
to be minimized, ∆t:

cost = ∆t = |tA − tG| (11.1)

A way of visualizing this problem is shown in Figure A of 11.2. In this figure, the y axis
represents the time difference between the unknown timezone KID time and the ground
truth time (converted to Pacific time) for each PID along the x axis. There are clearly well
defined horizontal trends corresponding to common timezones. For example, a distinct
trend around ∆t = 14 hrs is apparent and precisely corresponds to the time change from
Pacific to Bangladesh time, which makes sense given the majority of the data came from the
Bangladesh clinic. Since the goal of this step is to minimize the time deltas by predicting the
ideal timezone, re-plotting Figure 11.2 after applying the predicted timezones is hypothesized
to result in a plot with a horizontal trend at ∆t = 0 hrs. Figure B of 11.2 illustrates the
hypothesis is valid and the predicted timezones tend to minimize ∆t. Since the mean ∆t
is about 8 minutes with a standard deviation of 20 minutes this issue can be considered
solved.

Now the audio data can be clustered by time into sessions and these audio sessions can be
matched to the ground truth session closest to it chronologically.

Fig. 11.2: Visualizes the different timezones relative to Pacific Times. In (A) each horizontal trend
line corresponds to a timezone shift specific to a clinic, after running the clustering
algorithm and estimating the timezone, figure (B) is pl;otted which shows the error
between ground truth and audo session times is significantly reduced.

Merge Results
With the audio data and ground truth data aligned timezone wise and grouped into sessions,
the two tables are finally speaking the same language and can be merged. To make the
mapping one ground truth to many audio, rather than many to many, the best effort is
used as the ground truth for each session, assuming it is reproducible (as defined Chapter 5
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Spirometry), and the best effort is defined as the session with the maximum FEV1. Some
sessions were found to not contain at least three reproducible efforts and were unfortunately
omitted, along with the audio.

In total, 5964 ground truth sessions were identified. Of this, 97.4% demonstrate repro-
ducibility and 98.6% of those have at least one corresponding audio KID. Originally there
were 51940 KIDs, and after unifying, 83% were found to have reproducible ground truth
resulting in a table with 43318 audio entries.

This final unified table is constructed so each row entry is a unique audio KID and the
columns correspond to ground truth and audio information which map to that KID. This
result, table 11.1, has many seemingly duplicate rows as several sequential KIDs share the
same ground truth because they are from the same session. To prevent future models from
overfitting to these duplicate entries, random Gaussian noise is sprinkled into the ground
truth that fits a distribution proportional to the standard deviation of the reproducible entries
for each session. This allows the machine learning models to train on a more realistic
distribution of ground truth. This table is used for building the models outlined in Chapter
12 Methods, any future mention of the dataset in the context of this research will refer to
this unified table.

Tab. 11.1: Final unified table indexed by KID, note that the best effort is used for spirometry ground
truth

KID PID SID Trial Timestamp Audio File Spirometry Metrics
1000 1 1 1 3:00 1000.wav best ground truth effort
1001 1 1 2 3:04 1002.wav from spirmometer
1002 1 1 3 3:15 1002.wav and predictive metrics
1006 2 1 1 2:13 1006.wav
1008 2 1 2 2:20 1008.wav
1012 4 1 1 9:30 1012.wav

While all of this clustering may seem meticulous and over-engineered, it is absolutely
essential in creating a unified table suitable for building predictive machine learning models,
especially given the huge variance in data collection and uploading practices as each clinic.
In any data-driven problem, it is imperative that a high degree of confidence exists in the data
and each observation (in this case audio) is correctly matched to ground truth. Any error in
this critical step will lead to inaccurate predictive models that are difficult to troubleshoot.
Alot of this hassle could have been avoidied if the unique SIDs were assigned to each session
such that the CID and PID could be obtained given the SID and if the PIDs were assigned to
actually be unique. Future data collection efforts will certainly aim to prevent these sort of
organizational issues from snowballing as they have in this case.
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11.4 Audio Inspection

With the ground truth data sorted out and matched to all KIDs in the SQL database, the
next step is to fetch and manually inspect the audio files corresponding to each KID. For this
research, binary inspection labels are used and referred to as keep and delete. When fetching
the 43318 KID waveforms, only 26304 resulted in downloadable audio files. The most likely
reason is that some audio failed to upload or became corrupted. In addition, there were a
number of exact duplicate audio files represented as different KIDs. Since these duplicates
are not useful for training, they identified and removed prior to binary labeling. Statistics
related to the downloaded audio files are displayed in Table 11.2.

Tab. 11.2: Downloaded audio file statistics

File Count Unique PIDs Average Time Total Time Format Sample Rate
26304 6077 7.65s 56 hrs .wav 32kHz

This task is tedious but simple, one simply must inspect each file and label it as keep, meaning
it will be included in the training dataset, or delete, meaning it will be omitted as it doesn’t
sound like a valid effort. To speed up this task, waveform plots of each audio file were
rendered and displayed in a grid view. Criteria for delete include no obvious exhale effort
in audio, multiple efforts, loud background noise or speech, short or incomplete effort and
coughing in the effort. An example of a keep and delete waveform is illustrated in Figure
11.3.

Fig. 11.3: Example spirometry audio recordings. (A) shows a keep example with a clear exhale effort
and (B) shows a delete example with speech and no clear exhale

After screening all of the audio, 20505 were labeled keep and 4633 as delete the remaining
1166 were removed as they were marked as duplicates. The files labeled as delete are still
stored as they are used for the quality control confidence model outlined in the Methods
chapter, but they are not used to train the predictive spirometry model. Since the unified
table created in 11.3 still has 43318 KID entries, it is pruned down to 25138=20505+4633
entries with labeled audio. Furthermore, the keep/delete labels are added to the table as an
additional column.
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11.5 Distribution

Now that all of the audio and ground truth data is sorted out, data statistics and visualizations
can be generated to illustrate the story told by the data.

Patient Demographic
The Figures in 11.4 convey the statistics for the patients included in the dataset. Upon
inspecting the figures, a clear bias toward the Asian demographic is revealed. Since the
majority of the data was collected in the Bangladesh clinic and other clinics in Asia, it is
not surprising that the racial demographic is dominated by the Asian population. While
this is concerning and must be addressed in future work, previous literature indicates the
predictive power of race relative to lung health is fairly minimal relative to the other far more
important metrics (height and age) [20]. Based on the statistics, the average patient is a 5 ft
3 inch, 148 lb, 38-year-old Asian male, although several children and elderly patients are also
present in the data. Future data collection efforts will strive to further diversify the patient
demographic statistics as it is critical for the dataset to model the global distribution in order
to confidently claim the predictive models are not biased towards certain demographical
properties.

Fig. 11.4: Dataset distribution for (A) race, (B) gender, (C) height and (D) weight

Patient Health
The rest of this chapter assumes a more advanced understanding of spirometry and the
various associated metrics which are covered in the Spirometry chapter.

The patient demographics certainly are important as they are used to infer the predicted
lung health of the patients. Figure 11.5 shows a histogram of the FEV1/FVC ratio, FEV1
percent of predicted and FCV percent of predicted. Each histogram shows the healthy cutoff
as defined by the ATS criteria. Clearly, a number of PIDs are unhealthy or right on the border
for FEV1 and FVC percent predicted. The FEV1/FVC ratio metric seems less effected by
the imbalance, most likely because many patients have a low FEV1 and FVC, which is less
obvious when only the ration is observed.
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Fig. 11.5: Shows (A) FEV1/FVC ratio with healthy cutoff ratio at 0.7, (B) FEV1 percent of predicted
and (C) FVC percent of predicted both with the healthy cutoff at 80%

Using the decision tree shown in Figure 5.4, it is possible to estimate the diagnosis of each
entry in the dataset based on the information in the histograms in Figure 11.5. The pie
chart in Figure A of 11.6 shows these results of such an exercise, although to truly diagnose
the patients, more tests would generally be required. About a third of the patients are
healthy, meaning that their FEV1/FVC ratio, FEV1 and FVC percent of predicted are above
the cutoff. The rest have some from of a restrictive or obstructive pulmonary disorder. While
the dominance of unhealthy people may seem like a blessing given how rare these patients
are globally, it also serves as a huge limitation for any data-driven predictive model. If a
model is trained on a distribution skewed towards unhealthy people, it can not be expected
to perform as well on healthy people. This poses a problem since the global population is
much more skewed toward healthy rather than unhealthy.

Fig. 11.6: (A) Shows the estimated diagnosis the patients, (B) shows the FEV1s of the original and
uniform dataset, as well as the average FEV1 for an average 35 year old male and female

Data-driven models will bias towards the dense areas in the data distribution, which is not
an issue when the training data serves as an accurate sample of the population but can be
disastrous if the real world severely differs from the training data. Unfortunately, in this
dataset, the latter is the case. If the FEV1 average per patient is plotted in a histogram as
shown in the blue bars in Figure11.6, it is clear there is a nonuniform distribution of FEV1s,
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and it is particularly concentrated at the low < 2 FEV1 values. For reference, the figure is
annotated with the FEV1 for an average 35-year-old average sized male and female.

This issue is the single largest limitation preventing the research presented from working
to its fullest potential. One way to mitigate the imbalance is to manually create a more
evenly distributed dataset by only including patients so the FEV1 distribution is uniform.
This way of sampling is shown as pink bars in Figure 11.6. This strategy will allow the
machine learning models to learn a less biased prediction model but at the cost of losing the
majority of the data. The forced uniform sampling has approximately one third the amount
of entries and still is missing the > 4 FEV1 entries. The only true solution is to collect more
data in a more thoughtful way so the final dataset serves as a proxy for the global trends.
Efforts to collect more uniform data are in progress and covered in the Conclusion chapter.

11.6 Spirometry Ground Truth

While high-level metrics like patient health and demographics are important to investigate,
a great deal can also be learned from observing the statistics of the ground truth metrics
recorded by the spirometer for each patient. Table 11.3 summarizes these statistics for
the main spirometry metrics of interest, namely, FEV1 Predicted, FEV1, FET, FVC, and PEF.
Figure 11.7 overlays histograms for each metric which illustrates the mean and variance of
each metric. It can be inferred that the metrics with the larger variance will be more difficult
to predict as they are less consistent across the dataset.

Tab. 11.3: Statistics for key ground truth entries

FEV1 Predicted FEV1 FET FVC PEF
Mean 2.54 1.83 7.42 2.46 4.66
STD 1.34 0.93 2.79 1.01 2.00
Min 0 0.26 1.63 0.38 0.76
25% 2.12 1.12 6.10 1.72 3.1925
50% 2.55 1.75 7.20 2.33 4.555
75% 3.01 2.45 8.4 3.0575 5.88
Max 39.94 6.02 27.58 6.75 11.49

11.7 Conclusion

This chapter covers the generation, cleansing, unification, and statistics of the spirometry
dataset which turned out to be quite the perplexing task. The following Methods chapter will
propose a collection of features and machine learning models that will train and evaluate
on the data outlined in this chapter. Given the limitations in the dataset, the goal is
not necessarily to create a universal spirometer replacement as much as it is to evaluate
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Fig. 11.7: Visualizes the spread of the key Spirometry metrics for the PIDs in the dataset. The
different x axis are overlaied and labeled with their respective unit.

how different machine learning techniques perform at the task of measuring airflow from
the sound of an exhale. Regardless, the steps outlined in this chapter have resulted in a
much higher quality, easier to work with dataset that is hopefully less frightening to future
researchers. Additionally, important lessons were learned which will hopefully prevent future
data collection efforts from making the same mistakes.
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12Methods

In this chapter machine learning models will be proposed as potential solutions to sound-
based spirometry assessment. The methods combine clinical guidelines outlined in the
Spirometry chapter with machine learning strategies explained in the Machine Learning
Background chapter. First, recall the problem statement:

Explore data-driven methods for computing spirometry metrics suitable for respiratory dis-
ease management and screening from a smartphone sound recording of a forced expiratory
maneuver.

The exploratory nature of the problem statement implies multiple methods will be evaluated.
This chapter will cover the most promising of attempted methods, as well as the strategy
used to evaluate them. All of the proposed solutions are heavily reliant on machine learning,
although it will be shown there are aspects derived from the physical nature of airflow and
the human respiratory system.

Pipelines
The proposed methods are all based off a few abstract pipelines which are created for this
research to serve as a reusable codebase for experimenting with machine learning models
using the large dataset covered in the Dataset chapter. The pipelines can be categorized as
followed:

• Preprocessing: includes operations, such as trimming which prepare and standardize
the audio data uploaded from the smartphone for feature extraction.

• Classical Machine Learning: Implements a fully-featured training framework which
supports many of the models covered in Section 8.2, and automatically extracts
manually defined features from the preprocessed audio.

• Neural Network Learning: Implements a powerful deep neural network training
framework with spectrogram input, that supports the architectures covered in Section
8.3 and automatically extracts configurable spectrograms from the preprocessed audio.

• Evaluation Pipeline: Supports evaluating any of the models created in the classical or
neural network training pipeline on a specified evaluation set.
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Spirometry Models
The pipelines were built generically to support other sound or image-based machine learning
problems, but they are used specifically in this research to build the following spirometry
specific models:

• Trimming: Identifies the start and end time of a spirometry forced exhale in a given
audio file, then trims the audio so only the exhale region remains.

• Confidence: A basic quality assurance system for assessing if trimmed audio contains
a valid spirometry effort. The confidence model assigns a confidence score to the audio
and if it does not meet the quality standard, the audio is rejected.

• Prediction: Estimates spirometry metrics for audio that passes the Confidence model’s
acceptance criteria. Two Prediction variants are implemented:

– Scalar : Only predicts scalar spirometry metrics such as FEV1 or FVC
– Curve: Estimates a flow versus time curve and uses it to derive other spirometry

curves such as FV and scalar metrics.

Sprio AI System
The models can be combined to create an end-to-end system which takes audio directly
recorded from the phone and outputs spirometry metrics if the audio passes the quality
assurance phase. The proposed system, known as Spiro AI is shown in Figure 12.1.

Fig. 12.1: A block diagram of Spiro AI, the proposed end-to-end sound based spirometry system
comprised of various models

The remainder of this chapter will go into greater detail on the pipelines as well as the
specific models that utilizes the pipelines for training and evaluation.

12.1 Preprocessing Pipeline

The preprocessing pipeline has the job of standardizing audio that may come from different
phones or clinics which may record the audio in a slightly different format. For example,
some clinics start the recording up to a minute before the patient actually performs the
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maneuver, while others start it right before the exhale. Other sound specific parameters such
as sample rate number of channels and bit depth may vary as well. With a dataset as large
and variable as the spirometry one used in this work, it is imperative that all of the sounds
are converted to a familiar format before any model training can be performed effectively.
The preprocessing pipeline can be represented as a series of steps outlined below:

1. Load and decode the audio file into an array of integers
2. Convert the array to be a single channel, mono array
3. Resample the array to have a sample rate of 16000 Hz
4. Apply optional sound processing operations such as normalization or filtering to the

audio array
5. Apply the Trimming model to trim the audio vector so the trimmed result starts just

before the exhale and ends just after the airflow terminates
6. Output the trimmed, standardized audio sequence for further processing

12.2 Classical Machine Learning Pipeline

The classical machine learning pipeline, or ML pipeline for short, takes a collection of
preprocessed audio, extracts manually defined features, then exhaustively trains a set of
machine learning models using k-fold cross-validation to prevent overfitting and grid search
to choose the optimal model parameters. It is implemented in Python and relies on the
open source scikit-learn python library for the ML models implementation with exception
of gradient boosting which utilizes the superior LightGBM library. To use the ML pipeline,
the input dataset must be specified, as well as the ground truth label that the trained model
must learn to predict. The ML pipeline only works with single-valued (scalar) outputs for
both classification and regression problems. Due to the single output limitation, the ML
pipeline cannot train models to predict spirometry curves or multiple metrics. Instead, an
independent model must be trained for each desired scalar metric. Nonetheless, the ML
pipeline can be used to build a confidence accept/reject classification model, as well as a
series of models for the spirometry metrics of choice. Because this pipeline leverages the
classical machine learning methods, manually defined features must be extracted ahead of
time. This section will start by describing the manual features used in this work.

12.2.1 Manual Feature Extraction

A universal set of features is defined for use in both the confidence and predictive models.
This decision was made for convenience and efficiency reasons. Given the massive scale of
the training data, having different sets of features for different models overly complicates the
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process and makes evaluation more convoluted. Furthermore, assuming these models are
deployed, it is much more efficient to extract one set of features for both the confidence and
prediction model, rather than require separate, computationally heavy feature extraction for
each model.

Many of the extracted features are alluded to in the Sound Background chapter and will not
be explicitly defined in this section. The features must be in the form of a table where each
column represents a feature and each row represents a different entry in the training set,
indexed by audio file KID. Some features are single, scalar values, while others are an array
list of numbers. Any subset of these features can be used to train a classical ML model, and it
will be shown that different variations are compared performance wise in the Results chapter.
The universal feature set has a total size of 140 columns and is summarized below:

Scalar Features
• Loudness: The average loudness in dB of four key segments in the waveform, namely:

1) the whole audio segment (total), 2) the first 200 ms (explosive region), 3) everything
after the first 200ms (the decay region) and 4) the last 100ms (room noise).

• Filtered Loudness: The loudness of the same four regions defined above, except the
waveform is low pass filtered to attenuate frequencies above 1kHz. This effectively
removes sound outside the bands where airflow sound is expected to exist (the low
frequencies).

• Area: Simply the sum, or area of the waveform integrated with respect to time.
Also includes an additional variant which computes the area of the low pass filtered
waveform from above.

• Duration: The total time in milliseconds of the waveform (note, the audio has already
been trimmed by the Trimming model, so duration reflects how long the exhale lasted)

• Peak Count: Designed with the confidence model in mind, this feature quantifies the
number of distinct peaks using a standard peak counting algorithm. The intuition is
there should only be one peak when at the time when peak flow occurred. Additional
peaks are an indicator of a low-quality effort which may have been trimmed incorrectly
or contain a cough or multiple efforts.

Array Features
These features must be expanded such that each array index has its own column in the
features table. Many of these are shown in figures in the Sound Background chapter.

• Amplitude Envelope: An amplitude envelope of the audio downsampled to 16 sam-
ples. A low pass filtered variant is also included for a total of 32 points.

• Polynomial Coefficients: The uncompressed amplitude envelope is fit by an 8th order
polynomial to smoothly trace the variation in amplitude. Only the last four coefficients
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are used as the first few coefficients were found to be largely the same no matter what
the input.

• Spectral Envelope: A spectral envelope conveying the power spectral density, down-
sampled to 16 samples.

• Mel-Scaled Spectrogram: A typical Mel-spectrograms is downsampled and com-
pressed such that 80 values summarize the information in the original 128x64 spectro-
gram.

Prior to training these 140 features are extracted and arranged in a tabular form. This step is
usually performed once and then the features can be reused assuming the training data does
not change. The feature extraction process takes a few hours, but the result is a table which
summarizes several gigabytes of audio in less than a few megabytes. Some of the features
may be redundant, but part of the training objective is to assess which features are important
for a given model. Next, the training structure will be outlined for both the classification and
regression cases.

12.2.2 Supported Models

The following section lists the supported models as well as the procedure for training them.

Binary Classification
Recall binary classification tasks usually output a probability of an event being true, between
0 and 1, then the output is binarized based on whether or not it exceeds the decision
boundary. During training, all classification models use accuracy as the metric to maximize,
although this can be changed. There are several potential models that can be utilized for
binary classification, but for this work, the list is limited to the following models, which are
ordered in terms of complexity with their abbreviation in parenthesis:

• Naive Bayes (NB)
• Logistic Regression with L1 Regularization (Log L1)
• Logistic Regression with L2 Regularization (Log L2)
• K-Nearest Neighbors (KNN)
• Random Forests (RF)
• Gradient Boosting (GBM)

Regression
Regression models must output a continuous number rather than a binary decision and
therefore represents a class of models separate from classification. As it turns out, many
of the classification models can be re-branded for regression, so the list ends up begin
similar. The models are configured to minimize mean squared error between the prediction
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and ground truth value. The following models are used for regression, also in order of
complexity:

• Mean (guessing the mean value every time)
• Linear Regression with L1 Regularization (Lin L1)
• Linear Regression with L2 Regularization (Lin L2)
• K-Nearest Neighbors (KNN)
• Random Forests (RF)
• Gradient Boosting (GBM)

Training
There are a few other common practices used to train models using this pipeline. First, k-fold
cross validation is used. Cross-validation is used to retrain the model multiple (k) times
on different subsets of the training data to ensure the trained models are not overfitting to
the training set. In this work, a k value of 5 is used. Many of the models, such as KNN, RF,
and GBM require additional parameters to control the depth or complexity of the model.
It is often difficult to manually tune these parameters, so a strategy known as grid search
is utilized to converge to the best parameter choice by retraining the model several times,
each time with a different value for the parameter being tuned. The parameter from the best
performing model found in the grid search is used for this work. Upon completion of training
optimized model is saved along with other information including the training error, elapsed
time, feature importance and grid search optimal parameters. The size of the outputted
model depends on the type of model trained and ranges between a few kilobytes and less
than 50 megabytes. The elapsed time is anywhere between 1 and 30 minutes depending on
the machine used, input data and how cross-validation and grid search are parameterized.

Conclusion
In summary, a classical machine learning model for classification or regression can be trained
on a set of manually configured features using this pipeline. These models can only be
trained to output a single value. The resulting models are trained with 5-fold cross-validation
and parameters are optimized using grid search.

12.3 Neural Network Pipeline

The neural network training pipeline, or NN pipeline for short, takes a collection of prepro-
cessed audio, generates a configurable spectrogram input and trains a customizable neural
network. It is implemented in Python and relies on Tensorflow to generate and train NN
models. In order to use the pipeline, the input dataset must be specified, as well as the
ground truth labels the trained model must learn to predict. The NN pipeline s very flexible
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as an input or output of any dimension can be declared. This enables sequence outputs
like curves or multiple spirometry outputs to be specified in a single output. Therefore, all
proposed models can be built as a NN using this pipeline, with any input such as the raw
waveform, a spectrogram or the manual features. While raw time series audio and manual
features are experimented with for this work, the results only cover models trained with
Mel-scaled spectrogram input, as they performed best. Furthermore, for this work two main
architectures are explored, the CNN and CRNN, which are covered below.

12.3.1 Spectrogram Generation

The NN models in this work used Mel-spectrogram (Mel-specs) with 128 time frames and
64 Mel-bands and can be thought of as a volume of shape (128, 64, 1). To generate the
Mel-specs, first, a filterbank with Mel-weights is initialized. Next, the input trimmed audio
waveform is set to a fixed length of 5 seconds. If the input is longer than 5 seconds it is
trimmed and if it is less than 5 seconds it is padded with 0s. This way all of the Mel-specs
have the same timescale. The frequency scale is already fixed since all files share the same
sample rate (16kHz) and are thus bandlimited at 8kHz. The fixed length audio is converted
to a log-spectrogram using the standard STFT transform (1024 windows with an overlap
of 400), then the Mel-filter bank is applied to scale the frequency axis. The result is a 128
frames x 64 bands log scaled Mel-spectrogram in dB. An example is shown in Figure 12.2.

Fig. 12.2: An example of the spectrograms used in the neural network pipeline. (A) shows a valid
spirometry exhale, while (B) Is an invalid effort example

A novel feature of this pipeline is its ability to set the weights used in the filterbank as
a trainable parameter, then extract the ideal filterbank, post-training. This means rather
than using Mel-scaling, the network can adjust the scaling to make the bands of interest
high resolution, while the bands with little information are rendered at a low resolution.
Mel-scale is an example of weights designed to scale the frequency axis similar to human
ears, which is ideal for most natural sounds, but when the scope of sound is narrowed, such
as in the case with spirometry sounds, there are certainly more optimal filter-banks. This
option allows the NN to handle finding the optimal filter bank. Another useful feature in
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the spectrogram generation options is to set a minimum and maximum frequency if the 0 to
8kHz range is undesirable.

12.3.2 Convolutional Net Architecture

The convolutional neural network (CNN) architecture is an n layered CNN with m fully
connected layers (FCN) leading to the output. The architecture is defined by connecting a
series of 3D blocks of configurable volume. The type of blocks used in the CNN architecture,
which are mostly covered in Section 8.3, are listed below:

Blocks
• Waveform: A block of volume (n samples, 1, 1) which is meant to represent a single

channel audio waveform. The only parameter is the n samples
• Spectrogram: A block of volume (n frames, n mels, 1) which converts a 1D waveform

block into a 2D spectrogram. The filterbank is either fixed or trainable and has
spectrogram generation parameters such as: n frames, n mels, min freq and max freq.

• Convolution (conv): A block volume of (height, width, depth). Implements a convolu-
tion layer with max pooling and a configurable activation function. The height, width
are fixed based on the input to the block and the output depth is a definable parameter.
All of the other standard convolutional layer parameters are available. By default, the
block uses batch normalization, ELU for the activation, a filter size of 7x7, a max pool
size of 2x2 and dropout of 0.3, but these can all be specified.

• Fully Connected (FC): A block of volume (n nodes, 1, 1) which serves as a standard
FC layer with a customizable activation, which defaults to ReLU and dropout with a
default of 0.3.

• Output: A block of volume (n outputs, 1, 1) which is a standard FC layer except with a
linear activation in a regression problem, or sigmoid if classification. The n outputs is
flexible and can support anything from a sequence to a single binary output

With these blocks, several architecture variants can be assembled. In addition, the blocks
can be tweaked or extended as needed. For example to the Convolution, the block has been
extended to match the spec for a Gated-Convolution layer which has proven as useful in
audio-based NNs [93]. As a result of a lot of experiments and related works, the following
architectures tend to offer top performance in both the prediction and confidence models.

Space Needle Architecture
The Space Needle gets its name from the 3D shape it represents when assembled. It is
fairly simple to define as it only requires a few parameters which dictate the scale of the
architecture. First, the input and output must be specified. The input is typically a Waveform
followed by a Spectrogram block and following the configuration specified in Spectrogram
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Generation, would have a volume of (128, 64, 1). The output is simply an output block
matching the desired output shape. Following the input is a pyramid-shaped series of
Convolution blocks where each successive block has a depth of 0.5 that of the preceding
block. The parameter n conv dictates how many blocks will be in the series, note, it is limited
by the size of the input block, otherwise, too many decaying convolution blocks would yield
a negative volume. The conv decay factor, 0.5 by default can also be tweaked (it controls
the amount of max pooling) and the other Convolution block parameters can be defined
as needed. After the convolution block series is a similar pyramid shaped series of Fully
Connected blocks leading to the output block. The FC blocks are flattened, i.e., have shape
(n nodes, 1, 1), where n nodes= the volume of the last conv block. The FC series has the same
parameters as the conv series, namely: n fc and fc decay (which defaults to 0.5). Assembling
the space needle with default decay and n fc = 4, n conv = 3, depth=32 and spectrogram
input, and binary output creates a model is shown in Figure 12.3.

Fig. 12.3: Illustrates the Space Needle architecture with the decaying convolution and fully connected
blocks.

CNN Architecture Variants
There are many variants to the CNN architecture proposed above, most of which involve
replacing the FC pyramid blocks with a different set of blocks. The convolution blocks
perform the job of automatic feature extraction, so they are best left as is, aside from scaling
the volumes. Formidable FC block replacements include nothing at all, a global max or
average pooling block or a recurrent neural net (RNN). The argument for nothing at all is
enough conv blocks can essentially flatten the volume into a near (N, 1, 1) shaped block just
like the FC blocks. Global pooling essentially forces the last conv block to do exactly this and
is much more efficient than a series of FC blocks. Placing an RNN at the end of the network
is a common architecture for pattern-based sound known as a CRNN. This effectively gives
the final layers the ability to remember historical features extracted by the conv blocks. To
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utilize this ability, the input must be fed in in a time distributed manner rather than the full
spectrogram. CRNNs are difficult to tune but have been shown to outperform CNNs on the
same data (although they train much slower).

Training
The pipeline is typically training using stochastic gradient descent with momentum or Adam
as the optimizer. In regression problems, mean squared error is used as the cost function
and binary cross-entropy is used in binary classification problems. Usually, the networks
are instructed to train for unlimited iterations, and an early stopping algorithm is used to
dynamically terminate training if it shows signs of convergence or begins to diverge, i.e., the
cost metric is no longer progressively decreasing. This typically occurs between 100 and
1000 iterations, which can take over 8 hours on a high-performance GPU powered machine.
Tensorboard, a dashboard web interface, logs the progress and shows the training/validation
cost metric plotted against time so convergence can be monitored. When training concludes,
the final model and the trained weights are saved along with the final training set error and
elapsed time metrics. The final model is usually between 10 and 100 megabytes depending
on how many layers and the volume of each layer. Pre-trained models can also be retrained
or used as a starting point for a different dataset.

Conclusion
In conclusion, the neural network pipeline supports the high-level arrangement of blocks
representing different neural network components and layers. It is built to encourage
sandbox style experimentation and scales well with lots of data or outputs. The integration
of Tensorboard allows training models to be monitored and trained models to be easily
compared.

12.4 Evaluation Pipeline

The goal of the evaluation pipeline is to be model independent. The two training pipelines
described above output several different models, but to the evaluation pipeline, they are
merely a "black box" with an input, typically a waveform, or pre-extracted feature and an
output of either one or many binary or continuous outputs. The evaluation pipeline must
load a model, and perform inference, that is, get the output from the model after supplying
the input, on a preset evaluation dataset. It is important that 1) the evaluation dataset used
does not contain any overlapping data from the training set and 2) the same evaluation
set is used to compare models predicting the same output(s). Therefore, the evaluation
pipeline is parameterized by the model, the evaluation set, including the ground truth and
the type of output (regression or classification and one or many outputs). Evaluation is
much cheaper than training and can, therefore, run on any device with a decent CPU. Upon
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completing evaluation which takes a few minutes for most models (depending on the CPU
and the evaluation set size), a report is saved with the error metrics and plots as well as
well as elapsed time. The evaluation report different depending on whether the problem is
classification or regression, so they are described separately. The findings published in the
Results chapter are generated using this pipeline.

Binary Classification

For binary classification models, the evaluation report contains the standard classifications
such as precision, recall, f-score and accuracy. Additionally, the elapsed evaluation time is
provided. Finally, precision recall and ROC plots are saved. There is an option to save the
outputted predictions as well if further analysis is intended.

Regression

In the regression case, the report contains various error metrics and the elapsed evaluation
time. The error metrics included for the evaluation set are, average mean squared error and
absolute error, root mean squared error, and average percent error. When the output is a
scaler, the correlation coefficient and Bland-Altman plot are also recorded. When the output
is a curve, the predicted curve overlaid with the ground truth curve are plotted.

Conclusion

The evaluation pipeline offers a simple, standardized way to evaluate any type of models
exported by the training pipelines. Different evaluation sets can be used and a report is
generated for each evaluated model.

12.5 Spirometry Models

This section covers the proposed models for each block in the system diagram in Figure
12.1. While hundreds of variants are trained over the course of the research, these are the
ones being evaluated for this work. See Section 10.3 for details on the training process.
The model selection process is mostly based on performance error wise, but also sided for
simpler and more efficient variants. For example, the CRNN often performed marginally
better, but due to its much longer training time and extra complexity, the CNN version is
favored. It is certainly possible in the presence of more or different data, this selection would
be different.
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12.6 Trimming Model

The goal of the Trimming model is to trim a waveform so only the sound of the forced exhale
remains. It is a crucial and underestimated piece in the system. Though its job is simple,
almost instantaneous for a human, it is high risk, as any error will propagate through the
system and may result in unnecessary rejection by the Confidence model. Trimming is an
example of a case where machine learning and certainly deep learning might be overkill.
Especially given the unique shape of a spirometry exhale relative to other types of sounds.
Therefore a rule-based, old-school AI algorithm is employed as a based case.

Rule Based (unsupervised)
The procedure is quite simple and can be outlined completely as followed:

Note: L̄ signifies an average loudness, normally measured in dB, but treated as an log scaled
intensity percent where 100% is the loudest. This is more intuitive than dealing with the
negative dB scale. Also, many variables like windows size and thresholds can be set to anything,
the following values worked well in the manually inspected cases.

1. Normalize the audio waveform: Since this is a loudness based algorithm, normalizing
the audio such that the max amplitude is the same in all waveforms makes the
parameters easier to tune.

2. Measure the average room loudness: Which is expressed as the quietest region at
the start or end,L̄room = min(L̄[0 to 100ms], L̄[end−100 to end ms]). This naively assumes
the the first and/or last 100ms only contain the background noise, which is not very
robust.

3. Forward search for an impulse: This may be the trigger for the exhale event. This
search uses a small sliding window of size 5ms and looks for a segment at index n
where: L̄[n to n+5 ms] > 2L̄room, in other words it stops searching when it reaches a
segment significantly louder than room noise.

4. Backtrack to just before the impulse: Since the goal isn’t to start at the peak, but
slightly before. This search backtracks with a large window size of 30ms and marks the
start trim point as the index, n, where: L̄[n to n+30 ms] < 1.5L̄room, or the point before
the impulse that is much closer to the measured room noise.

5. Forward search for end of decay: In order to find the end trim point, it is assumed
the exhale lasts at least 1500 ms. A large window size of 30ms starts at start + 1500 ms
and forward searches for the index, n where: L̄[n to n+30 ms] < L̄room, which indicates
the noise level has come back down to the room noise.

6. Continue forward search until another impulse is detected: Often times the tail
end of an exhale is very quiet, rather than prematurely cutting it off, this final search
searches for the index, n where: L̄[n to n+30 ms] > 1.5L̄room, signifying the noise level
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has come up again which may mean the patient coughed or is talking. This point is
then marked as end, otherwise the end is set to the end of the original waveform.

This procedure is trivial to program and works surprisingly well. While no machine learning
is used to tune it, human effort certainly helps. About 2000 trimmed recordings are manually
inspected and the windows sizes and thresholds are set to prevent the most common issues.
Still, this algorithm is purely amplitude based and does not consider the frequency bands
of the sounds. Therefore it is prone to false positives as it is easy to generate a completely
different sound with a similar amplitude envelope. Examples of successful and failed
trimming are shown in the Results chapter.

Cross Correlation (semi-supervised)

A much more elegant way to locate the exhale region without needing to label all of the
data involves the concept of cross-correlation. Essentially, cross-correlation slides a reference
signal shape along the x axis of another, usually longer source signal and identifies the x
position where the reference signal best matches, or correlates to the source. It is very similar
to the convolution operation.

The way cross-correlation can be applied to trimming requires a reference signal to be gener-
ated by averaging the amplitude envelope of several already correctly trimmed recordings.
This ground truth is assembled by manually inspecting outputs of the rule-based method.
Then the reference can be cross-correlated with an untrimmed source and the maximum point
of similarity can be taken as the start time. The generated reference signal is displayed in
the Results chapter. While this method is promising it has not been sufficiently evaluated or
compared to the rule-based method.

Neural Network Pipeline (supervised)

The future plan is to bake the Trimming model into the Confidence model, assuming a NN is
used for it. CRNNs have shown to be very effective at identifying the start and end in various
audio detection tasks [93]. It is compelling to combine the two models as Trimming can
be thought of as a part of quality assurance and audio that cannot be effectively trimmed
should be rejected anyway. Early investigation into this method has progressed, but without
a large labeled dataset, it is difficult to match the performance of the other methods.

Conclusion

Currently, the tried and true rule-based approach is used to trim the existing dataset and all
future data. Impotent future work will involve evaluating other more robust methods.
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12.7 Confidence Model

The Confidence model serves as a quality check to ensure only legitimate spirometry efforts
are sent to the Prediction model when the system use used in a deployed scenario. Since
the Predictive models are not physics based, it is undefined how they will perform if the
input significantly differs from the training data, therefore the Confidence model is built
to ensure the right kind of input is passed through the system. The goal of this model is
to eventually run on the phone, so other than accuracy, inference time is also crucial. For
this reason, the NNs are configured to be lightweight at the cost of accuracy. Furthermore,
since the model is for quality control, it should be tuned to have a low false positive rate,
therefore precision-recall and ROC curves will be shown as results.

Dataset
The dataset used originally comprised of the keep/delete labels gathered from the task
described in Section 11.4. There are two problems with using these labels for training, first,
it is highly imbalanced ( 20k keep labels and 5k delete) and second, there are many more
example of sounds that should not be accepted which are not captured in this dataset. For
these reasons, the training set is augmented with approximately 15k "negatives" which are
labeled as delete. These negatives are a random collection of sounds from datasets in other
audio domains, for example, speech, urban sounds, and coughs. Using the negatives both
balanced out the keep/delete and add diversity to the delete set so the model can learn to
reject coughs, speech, and loud background noise. Thanks to the preprocessing pipeline, the
audio from various sources all has the same encoding. An example of a recording labeled
as keep and delete is shown and Figure 12.2 A and B respectively. The final training set is
comprised of 20k entries with 50% keep and delete. The evaluation set is only 200 entries,
but they are handpicked to be difficult realistic examples. It was found randomly generating
the evaluations set made the task too easy and gave misleading results. The ground truth, Y ,
is simply the binary keep/delete label where 1 is keep.

12.7.1 Models Evaluated

Given the problem is a binary decision, the classification variants of the training pipelines
are used. The NN based Confidence model is referred to as ConfidenceNet.

Classical Models
The classical ML models explored are Logistic regression with L1 and L2, Gradient boosting
(GBM), Random forests (RF), K-nearest neighbors (KNN) and Naive Bayes (NB). There are
three different variants of manual feature sets, X, used; all uses all the features defined in
Section 12.2, mel-only uses only the 80 Mel-spec based features, and no-mel uses all of the
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features except for the 80 Mel-spec features. The reason for this is to gain insight on which
features are the most useful. Furthermore, the mel-only results can be directly compared to
the neural network Confidence model, which also uses Mel-specs as an input.

In all feature variations, the general order of the models that achieved highest accuracy
remains the same: GBM > RF > Log L2 > Log L1 > KNN > NB. For this reason, GBM is
selected as the decision tree based model and Log L2 is selected as the linear model, and
only these two models are further evaluated. It is also worth mentioning the GBM requires
significantly less memory and processing time to perform inference, making much more
attractive compared to the bulky, RF. Grid search identified 320 to be the optimal value for
the number of estimators parameter. In summary a all, mel-only and no-mel variant of GBM
and Log L2 will be evaluated.

ConfidenceNet Models
Two ConfidenceNet models are explored, a lightweight CNN and a lighter CRNN. The both
use Mel-specs as the input feature X. They each are capable of similar performance in
general, but the CRNN was not reliable as each training session it either performed on par
with CNN or significantly worse. For this reason, only the CNN is fully evaluated. The CNN
Space Needle architecture is defined as shown in Table 12.1:

Tab. 12.1: Parameters used for the ConfidenceNet CNN model

Parameter n conv depth filt size pool size n fc
Value 3 32 7x7 3x3 2

In total, the model is relatively small with only 143 thousand trainable neurons, occupying
only 1.2 megabytes when fully trained. It is independently trained several times to ensure
training converges to similar weights each time. Unlike in the case with the CRNN, the CNN
had very repeatable results. CNN convergence usually occurred in < 100 iterations, usually
around 40, which takes about an hour.

12.8 Prediction Model

The prediction model does all of the heavy lifting. It must generate a full spirometry report,
from only a trimmed audio recording of an exhale. There are three types of models proposed
as a solution to this difficult problem. Two of the approaches, the classical ML, and the
Scalar NN, named ScalarNet, train an independent model for each desired scalar spirometry
metric. The metrics models are trained to predict are FEV1, FVC, PEF, and FET. When
performing inference, each model must independently process the trimmed audio which can
be inefficient. Also, by treating the spirometry metrics as independent, the single output
models will not learn directly the relationships between differing spirometry metrics and are
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therefore blind to some degree. The benefit is they can focus all of the weights and machine
learning power to a single output rather than being distracted by multiple outputs. This
strategy is more similar to prior work in machine learning based spirometry.

The third curve based option, named CurveNet, is far more novel as it utilizes a NN trained
to predict the flow versus time (FT) sequence, then derive all of the metrics and other
curves. It has the added benefit of outputting the FV and VT curves in the spirometry report.
Additionally, the outputs are all dependent on the original FT curve and thus make sense
physically. Since this model does not predict the metrics directly, it can be harder to control
and bound the derived outputs. For this reason a custom, physics-based cost function is
developed to penalize the derived scalars as well the curves in a way that can be customized
to penalize certain outputs more than others.

The goal of the prediction model is to eventually run on-device, so it must be lightweight and
comprised of easy to extract features in the classical case. Given CurveNet is a single model
which only requires an input spectrogram and can predict all of the spirometry metrics, it is
the most compelling case for an on-device model, assuming it is on par accuracy wise with
the other options. The most important aspect of the prediction models is low, unbiased error,
to assess this, a Bland-Altman plot is generated for the top performing models.

Dataset

The dataset is limited to only entries labeled as keep, which contain curves and all spirometry
metrics as ground truth. Additionally, the entries all demonstrate reproducibility. After
applying all of this criteria, a training set with 14.5k remained. About 5% of the patients in
this set are kept out for evaluation. This set of patients is manually picked to represent a
somewhat normal distribution in terms of FEV1 to ensure the evaluation set best represented
the population. As explained in the Dataset chapter, the data is heavily skewed toward
unhealthy, which is irreversible.

For the single output models, the ground truth, Y , is simply the corresponding metric
measured from a clinical spirometer. In the case of CurveNet, the ground truth FEV1, FVC,
PEF and FET outputs are arranged into an array. The ground truth FV and VT curves are
re-sampled so they have a sample rate of 50Hz, and are set to a fixed length of 500, or 10
seconds using padding or truncation. There is no ground truth for the FT curve, so it is not
part of the cost function, only the parameters derived from it. Therefore, the ground truth,
Y is a vector of size 500+500+4 = 1004 values, although the cost function penalizes them
differently.
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12.8.1 Models Evaluated

The nature of this problem is regression, so the respective classical and NN pipelines are
used.

Classical Models
The classical ML models explored for regression are: Linear regression with L1 and L2,
gradient boosting (GBM), random forests (RF), K-nearest neighbors (KNN) and Mean
tracking (simply guessing the mean every time). Each of these are trained with 5-fold
cross-validation and grid search for all four spirometry metrics. Just as in the ML Confidence
Model, three different variants of manual feature sets, X, are used; all, mel-only, and
no-mel.

Similar to the confidence model, only the top decision tree model and linear model is used in
the final result. The model rankings resemble the Confidence model rankings, even though
the problem and dataset is vastly different, namely: GBM > RF > Lin L2 = Lin L1 > KNN
> Mean, were ranked in terms of smallest absolute error. In these models, Lin L2 and Lin L1
are pretty much equal, but L2 is used simply to stay consistent with the Confidence model.
GBM is once again selected as the superior decision tree model.

ScalarNet Model
A ScalarNet model is used for each independent output, with Mel-specs as the input feature
X. The Mel-specs are generated using a Specrogram block with the filterbank weights
and frequency cutoffs set as trainable parameters. The final results will show what the
ideal spectrogram scaling turned out to be. There was exploration into the architecture
parameters, but ScalarNet by far had the least experimentation. It also uses the CNN Space
Needle architecture and is parameterized as shown in Table 12.2:

Tab. 12.2: Parameters used for the ScalarNet CNN model, each independent spirometry models uses
the same architecture.

Parameter n conv depth filt size pool size n fc
Value 4 64 7x7 2x2 3

This architecture is significantly heavier than the Confidence model as it has greater depth, n
conv, n fc and a smaller pool size. In total it has 4.4 million parameters with 3.3 million train-
able neurons, occupying 45 megabytes when fully trained. The four spirometry models are
trained several times to ensure training converges to similar weights each time. Convergence
tends to occur around 100 iterations, which takes about an 1.5 hours.

CurveNet Model
CurveNet uses the same inputs, X as ScalarNet with trainable spectrogram scaling and
frequency cutoffs. The architecture parameters are also very similar, the only difference
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being fewer n fc layers as the output doesn’t need to be widdled down as much since it is a
sequence. The architecture parameters are shown in Table 12.3.

Tab. 12.3: Parameters used for the CurveNet CNN model.

Parameter n conv depth filt size pool size n fc
Value 4 64 7x7 2x2 0

This architecture is actually lighter weight than the Scalar model as it does not use FC layers,
although the multiple outputs may slow it down. In total it has 2.7 million parameters
with 1.6 million trainable neurons, occupying 30 megabytes when fully trained. Training,
however, is much slower as the model must learn how to balance all of the outputs and
how to share parameters useful for predicting them. Furthermore, since the output is a
time-varying sequence, the CurveNet must learn how to keep track of how the sound varies
with time. Typical training can last anywhere between 3 and 8 hours and usually requires
300 to 1000 iterations. It is unclear what the optimal training time is as the overall loss
seems to continue to drop, well into 1000 iterations. That being said a model trained with
only 200 iterations is generally only marginally worse (about 0.02 liters more in average
error) on FEV1 compared to 1000 iterations. This suggests the model may begin to overfit
to the data and does not learn anything new after around 200 iterations, or 3 hours. More
experimentation is required to fully understand this.

CurveNet Cost Function
What differentiates CurveNet from ScalarNet is the way the output and cost function are
handled. The last trainable FC layer, outputs a volume of size (500, 1, 1), corresponding to a
10 second FT curve. The FT curve is used as the main output as it represents a sequence
physically similar to the input audio. One issue is the input audio is only 5 seconds long,
which means the model must extrapolate to 10 seconds of flow. In most cases, the flow is
nearly 0 within 5 seconds, so this is not too much of an issue. It does, however limit the
predictive power for the FET metric. Since there is no ground truth for FT, nor a desire
for its use by clinicians, the VT curve is derived from the FT using integration, or a scaled
cumulative sum. With the FT and VT curve, all the spirometry metrics can be derived. PEF
and FVC are the max value of the FT and VT curve respectively, and FEV1 is the value of
the VT curve at 1 second or the 50th sample. FET is the time at which the FT decays to 0,
or the time when FVC is reached. the FV curve can be assembled after the other curves are
predicted as it is simply a combination of the FT and VT plots.

While these parameters are easy to derive with conventional mathematics, it is much more
difficult to derive them using differentiable operations supported by Tensorflow. Nonetheless,
a custom output block was eventually implemented to derive all of the curves and parameters.
These derivations do not require any trainable parameters, and thus do not add much
complexity to the model. As a result, the custom output block takes in a volume of (500, 1,
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1) and outputs 6 volumes, namely: FT curve and VT curve with volume (500, 1, 1), as well
as scalars, FEV1, FVC, PEF, and FET with volume (1, 1, 1).

The custom cost function must compute a cost, or loss, as a function of all of these outputs.
For each output, mean squared error is used, but the outputs are weighted differently. The
weights, which sum to 1 are as followed: 0.2 for FT and VT, 0.25 for FVC, 0.3 for FEV1, 0.04
for FET and 0.01 for PEF. These weights are set somewhat subjectively as FEV1 is by far
the most useful metric, followed by FVC. Experimental results show if PEF has too high of
a weight, the curves begin to look unnatural as they have random impulse to try to hit the
PEF at some point in the curve. Also, PEF and FET have very little clinical relevance so are
treated as so. One way to think about the cost function is as a measure of similarity between
the ground truth curves and the predicted curves, with a heavy penalty on the points where
the spirometry metrics occur. This way, the shape of the curve is most accurate near the
points that matter.

12.9 Conclusion

In summary, the generic pipelines have been implemented to support the training and
evaluation of several types of models that solve a few specific purposes required for the
Spiro AI system. These purposes include trimming effort to isolated the exhale, affirming the
exhale is acceptable with a sufficient degree of confidence, and predicting the spirometry
outputs to generate a report. The next chapter, Results, will cover the results of evaluating
the models proposed in this chapter.
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13Results

This chapter summarizes the results of the methods proposed in Chapter 12, as well as the
main insights. The Trimming models are evaluated subjectively as there is no established
ground truth for the trim regions yet. The Confidence and Prediction models are evaluated
using the evaluation pipeline which provides a thorough evaluation of each proposed model,
including error metrics and feature importance insights. More analysis is conducted on the
CurveNet results, including examples of the outputted curves.

13.1 Trimming Model

A formal evaluation of the trimming model has not been completed, however, a manual
inspection of 2000 results has been performed as a sanity check.

13.1.1 Rule-based Trimming Model

The Rule-based method successfully trimmed 9/10 recordings. Figure A of 13.1 shows a
correct trimming where the start is just before the impulse and the end is right before another
superfluous impulse. In Figure B, the model correctly segments an exhale, but it is unclear
whether it is the ideal one as there appear to be two separate valid ones. Figure C is an
example of a failed trimming as the impulse at the start is a false positive and the true start
happens a few seconds later.

13.1.2 Cross-Correlation Trimming Model

The Cross-Correlation trimming Model, had comparable results although appeared to be
more precise at finding the start and less prone to false positive such as in Figure C of
13.1. The downside to this method is it only finds the start. A separate rule-based strategy
must be implemented to find the end. For this reason, the original Rule-based method is
still preferred. The reference signal, trained using unsupervised expectation maximization
algorithm, is shown in Figure D of 13.1. The optimized reference signal is simply a sharp
impulse with a rapid decay to 0.
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Fig. 13.1: A-C show results of the Rule-based trimming model where (A) Shows a good trim result,
(B) is an example where it looks like two exhales occur and the first is successfully
segmented. (C) is a failure due to the false positive impulse before the exhale. (D) Shows
the cross-correlation reference signal. For all plots, the x axis is the time in seconds and y
axis amplitude and the absolute value of the waveform is plotted.

13.2 Confidence Model

The evaluation results for ConfidenceNet, GBM, and Log L2 on 200 unseen efforts are
organized in Table 13.1. In almost all metrics, the GBM trained on all features performs
significantly better, achieving about 5% more accuracy on the evaluation set. Given only
the Mel-specs as input features, ConfidenceNet slightly outperforms the competition. In
the case of Log L2, it seems the Mel based features do not help much since the no-mels
and all variants achieved similar performance. This suggests the Mel-spectrograms do not
expose what makes up an acceptable effort in a linear way, although such information can
be gathered with non-linear observations as shown in ConfidenceNet and GBM.

Tab. 13.1: The results from evaluating various models on the confidence evaluation set with 200
difficult entries.

Model Features Accuracy Fscore Precision Recall
ConfidenceNet only mels 0.852 0.850 0.814 0.888
GBM only mels 0.843 0.837 0.813 0.863
Log L2 only mels 0.821 0.821 0.775 0.873
Log L2 no mels 0.845 0.847 0.789 0.914
GBM no mels 0.876 0.874 0.837 0.914
GBM all 0.895 0.891 0.870 0.914
Log L2 all 0.850 0.845 0.819 0.873

13.2.1 Manual Feature Importance

Analyzing the feature importance for each feature set highlights in most cases the features
quantifying the explosive start of an exhale are the most useful predictors of an acceptable
effort.
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No-mel Feature Set

This is the simplest feature set as it contains basic waveform loudness properties as well as
the polynomial coefficients and downsampled amplitude and frequency envelopes for a total
of 60 features. In the case of Log L2, the features with the largest weight are the loudness
of the first 200ms, followed by other features describing the beginning of the sound. The
least important feature is the room loudness, which makes sense as it doesn’t describe the
exhale effort at all. In GBM, the list is similar, features describing the explosive part of the
effort tended to have higher important, although GMB favored the low pass filtered feature
variants. The least important features are the ones describing the tail end of the sound.

Only-mel Feature Set

This set consists of 80 features describing a downsampled Mel-scaled spectrogram. It is
evaluated in order to compare to the NN model. Oddly enough the Log L2 and GBM are
opposite in terms of the feature importance. Log L2 favors the Mel-spec regions that describe
the dead space, that is, the times and frequencies where the obvious exhale qualities do not
exist (end of the recording or high pitch frequencies). Conversely, GBM favors the Mel-spec
regions where the exhale lives, the beginning and lower frequencies.

All Feature Set

This set combines all features for a total of 140. The order of importance is essentially
the superposition of the two prior sets. In Log L2 the loudness of the first 200ms is still
the largest weight, but the following features are all Mel-spec based. The GBM as in other
feature sets, most utilized any features describing the explosive start.

13.2.2 Receiver Operating Characteristic Curves

The Receiver Operating Characteristic curve (ROC), shown in Figure 13.2 plots the true
positive rate against the false positive rate at different decision thresholds. The plots show
the trade-off between sensitivity and specificity, an increase in sensitivity will be accompanied
by a decrease in specificity. The further the curve is from the diagonal line, or closer it is
to the left, top corner, the more accurate the test. Given a binary classification model such
as the Confidence model, one can tune the behavior to either have high detection rate, at
the cost of more false positives, or sacrifice detection accuracy in order to minimize false
positives. For this work, it makes sense to choose a decision threshold that maps to the elbow
(top left corner) of the ROC curves since for the most accurate models, this corresponds to a
< 10% false positive rate and a true positive rate > 85%.
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Fig. 13.2: ROC plots for (A) GBM with all features show a balance between the true and false
positive rate in both classes, and the Only-mel features for (B) ConfidenceNet, (C) GBM,
and (D) Log L2. From left to right the models become more vulnerable to false positives

13.3 Prediction Model

The results of evaluating ScalarNet, CurveNet GBM, and Log L2 on 772 unseen, somewhat
uniformly distributed patients are organized in Table 13.2. Unlike the with Confidence
models, the neural network approaches perform best. This is likely because the problem is
much more complex, beyond the limits of the manually extracted features.

Tab. 13.2: The evaluation results for the spirometry Prediction models, evaluated on 772 uniformly
distributed entries. The error metric used is absolute error.

Model Features FEV1 FVC PEF FET
Mean Tracking NA 0.78 0.68 1.90 1.73
CurveNet only mels 0.48 0.50 1.39 1.72
ScalarNet only mels 0.50 0.52 1.33 1.79
Lin L2 only mels 0.63 0.62 1.69 1.70
GBM only mels 0.56 0.54 1.51 1.69
Lin L2 no mels 0.63 0.60 1.69 1.66
GBM no mels 0.54 0.56 1.51 1.59
Lin L2 all 0.60 0.57 1.69 1.65
GBM all 0.52 0.54 1.53 1.61

Recall, FEV1 is typically between 0 and 5 L, FVC between 1 and 8 L. PEF (L/s) and FET
(s) vary much more up to around 12 these insights are made apparent in Figure 11.7. The
relative difficulty of predicting spirometry outputs is proportional to the variance of the
distribution, as captured by the Mean Tracking model. The FET metric has proven difficult to
predict as in most models the absolute error is comparable to just guessing the mean. This is
likely due to two reasons: First, the audio is often trimmed to around 5 seconds, and the FET
which captures the elapsed time of the exhale, is typically > 10 seconds, so the models must
extrapolate in time in order to predict FET. Second, the FET is highly variable and is not well
correlated with other spirometry metrics. Since the FET is mostly used clinically to screen
for errors such as early stop, it is not very important as a diagnostic output and therefore can
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be omitted without much of a sacrifice to the end use case. In CurveNet, the FET output is
assigned a very low penalty in the cost function for these reasons. The other metrics perform
far better than guessing the mean and have much more clinical relevance as well.

13.3.1 Manual Feature Importance

In the manual predictive models, four spirometry metrics are evaluated with three different
feature sets for both GBM and Log L2. This results in 24 independent models. Rather than
exhaustively covering the feature importance for each model, high-level observations will be
offered the three features sets. In general, ML models using the only-mel features performed
worse than the all or no-mel features, which indicates the manually defined features sets
provide more predictive power than the downsampled Mel-spectrogram.

No-mel Feature Set

In the no-mel features, the FET and FVC metrics highly rely on the overall area of the
sound. PEF and FEV1 unsurprisingly rely on the features that describe the explosive region
of the sound, such as the loudness, polynomial coefficients, and the amplitude/frequency
envelope. In general, FEV1 and FVC seem to use more of the features and thus assign a
higher importance to most of them, while FET and PEF mainly rely on a select few. This
suggests the selected features are not adequate for FET and PEF predictions.

Only-mel Feature Set

The time regions of the Mel-spectrograms found most useful for each metric is highly
correlated to the time region on the flow versus time curve where each metric can be derived,
which suggests the Mel-spectrogram is a valid proxy for a flow versus time curve. Therefore,
the PEF and FEV1 metrics most utilized the first second of the spectrogram. FET typically
utilized the start and end regions, and FVC seems to be based on the area of dead space
frequency bands where the exhale does not occur, similar to the Confidence model. Unlike
the no-mel case, all spirometry metrics tend to use all the Mel features to some degree which
implies the predictions are a function of the complete spectrogram.

All Feature Set

When all features are used, it becomes clear that the manually defined features are preferred
by the models, especially in the Log L2. In general, the most important features resemble
those described in the no-mel section, except with a few Mel based features sprinkled in. In
particular, the Mel features describing the explosive region of the exhale are valued.
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13.3.2 Bland-Altman Plots

To evaluate the agreement between the proposed Predictive models and the gold standard
ground truth spirometry data, a Bland-Altman (BA) plot, is used (known as a Tukey Mean-
Difference Plot outside of the medical field). While correlation quantifies the strength of the
linear relationship between two variables, the limits of agreement highlight the differences
between to methods. A BA plot is a graphical method to plot the difference scores of two
measurements against the mean for each subject [9]. Predictions for each patient appear as
dots that align with the ground truth value via the x axis. The y axis highlights the error or
difference between the ground truth and the prediction. The three horizontal lines represent
mean of difference, called bias (the middle line, ideally at y=0) and the other two lines are
limits of agreement set to plus or minus 1.96 the standard deviation.

The plot is solely meant to define the intervals of agreements and does not say whether
those limits are acceptable or not. Acceptability limits must be defined separately, usually in
a problem specific manner. While these plots alone do not necessarily indicate if a proposed
method is passing or not, they do provide a great deal of information on how it performs on
a population. Ideally, the measurement error of the proposed method is low and unbiased,
this is characterized by a BA plot as randomly scattered points around the bias line that are
independent of the x axis. A poor model that simply predicts the mean would appear as a
linear trend increasing as the x axis increases since the error would be most negative at low
x values and most positive at high x values. A BA plot also shows how uniformly distributed
the sample population is based on the spread in the x direction. This allows outlier analysis
to be performed as the error for outliers is encoded in the plot.

Ideally, a BA plot has all of the points within the limits of agreement and randomly distributed
in the y direction around the bias line, no matter what x value. Furthermore, the span
of the points along the x axis should adequately represent the population for the metric
being evaluated and not be overly clustered in a narrow range. Figure 13.3 shows the
Bland-Altman plots for the only-mel predictive models where Figure A is the FEV1 metric
and B, FVC.

Clearly, there is an undesired error distribution represented in all plots as there is a weak
linear trend showing overestimation for low values and underestimation for high values,
especially in the Log L2 models. These plots point out models such as Log L2 that learn to
predict the close to the mean. Furthermore, the plots show most of the data is concentrated
in the lower region of the x axis, which re-enforces the data imbalance issues covered in
Section 11.5. The evaluation set is crafted to be more evenly distributed than randomly
sampling, however, there are not enough healthy patients to evenly represent the higher
x axis values. All things considered, the green CurveNet BA plots demonstrate tighter
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Fig. 13.3: Bland-Altman plots for (A) FEV1 and (B) FVC metric evaluating the CurveNet model
(green), GBM model (blue) and Log L2 (purple) on a sample size of 772. Some of the Log
L2 points are outside the scale shown.

agreement with the ground truth and a more unbiased error. This, coupled with its low
absolute error as shown in Table 13.2 makes it the strongest model of the Predictive models
proposed.

13.3.3 CurveNet Model

Aside from being the top performing Predictive model, CurveNet also offers much more
diagnostic power is it outputs the spirometry curves in addition to the metrics. This section
evaluates the error and correlation between the predicted and ground truth curves. Table
13.3 shows the curve evaluation results for the flow (FT) and volume (VT) versus time
curves, where flow is measured in L/s and volume, L. The flow volume curve (FV) can be
thought of as a compounded error of the FT and VT as it combines the two plots.

Tab. 13.3: The spirometry curve evaluation results specific to CurveNet for flow versus time (FT)
and volume versus time (VT).

Curve Abs Error Corr Coeff
FT 0.14 0.87
VT 0.48 0.75

The FT has a deceivingly low absolute error because the curve is ten seconds long but mostly
made up of zeros for the last 5 seconds. VT has a higher error because the final value is the
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FVC rather than 0 so it is harder to fit to as FVC varies significantly per person. The full page
Figure 13.6 at the end of the chapter demonstrates outputted curves (blue) overlaid with
the ground truth curve (green) to visually show the correlation between randomly selected
good and bad fits. As shown, it is possible to have a very tight fit and the overall error is
based on how well correlated the FT curve is in the first few seconds since the other curves
are derived from it. Further research will need to explore clever methods for verifying the
scaling of the curves. Often time the largest error comes from scaling the PEF incorrectly as
the general curve shape is often accurate.

With CurveNet, it is possible to analyze the structure of the neural network in order to
expose the regions of the input that are most useful in generating the output by looking
at the feature maps as the input is cascaded through the layers. This concept is similar to
manual feature importance but results in a much higher resolution understanding of what
the model uses in a spatial sense. Figure 13.4 summarizes this concept and represents a
heat map showing the most important regions in the input Mel-spectrogram. The result
reinforces some of the discussion in the Manual Feature Importance section as it is clear
the explosive region is the strongest predictor of the output. Other interesting observations
indicate certain frequency regions which tend to have more useful information or exist for
longer durations of time. It appears the neural network tracks the decay of the sounds
existing around 1.5kHz, and less so for sounds in the proximity of 3.5kHz. Furthermore, the
low frequencies (between 100Hz and 300Hz) are shown to have a significant level of focus
across the entire duration. It is also clear that frequencies above 4kHz, especially after the
first second, are not very useful.

Fig. 13.4: A heat map highlighting the region of interest in the first two seconds of an input Mel-
spectrogram. Generated by compounding the feature maps of various acceptable input
exhale efforts.

This analysis is very useful in understanding the physical properties of a human-powered
exhale, and it informs the best form of scaling the frequency axis for a spectrogram. Clearly,
the Mel-spectrogram is on the right track as it allocates progressively higher resolution to the
lower frequency bands, but it is certainly possible that a better frequency scale or filterbank
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exists for the purposes of spirometry. For this reason, the neural network architecture has
been revised to allow training a custom filterbank. While results have not yet been obtained,
the hypothesis is that an ideal scaling will offer a higher resolution in the bands that are
more attended to in the neural network, such as the 100Hz to 300Hz range as well as the
1.5kHz and 3.5kHz regions.

13.4 Conclusion

The results suggest each model required in the system will benefit from a different type of
model, namely, the Trimming model is best suited with a fully defined Rule-based model, the
Confidence model works best with GBM using all manual input features and the Prediction
model benefits most from the CurveNet neural network. These findings are summarized in
the annotated Spiro AI system diagram from Chapter 12 shown in Figure 13.5.

Fig. 13.5: Spiro AI end-to-end system with the best performing models annotated above each block.

Prior work outlined in Section 9.2 report results in percent error and evaluate on much
smaller, more uniform population distributions. This work uses absolute error as a metric
because percent error is misleading when sample distributions between opposing methods
do not overlap. For example, an FEV1 with absolute error of 0.5 L taken from a distribution
centered around an FEV1 of 4 L (as in SpiroSmart) would have a percent error of 12.5%
, while the same absolute error measured from a distribution centered around an FEV1 of
2 L (as in this work) would report double the percent error (25%). This, coupled with the
drastically different evaluation sizes and distributions, unfortunately, make comparing to
prior work somewhat of a lost cause. Either way, the requirements set in stone by the Food
and Drug Administration (FDA) require FEV1 absolute error less than 0.2 L for the device to
be considered clinically adequate, so there is still a long way to go.

In summary, the results presented are far from meeting the clinical gold standard and difficult
to compare to prior work, but they provide a strong baseline from which improvements can
surely stem from. Given the non-ideal state of the dataset and the difficulty of the problem,
these results serve as an exploration of different input features and types of models rather
than an evaluation of a clinical grade technique.
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Fig. 13.6: Randomly selected examples of CurveNet curve outputs which show acceptable output as
well as erroneous outputs for large and small lung size
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14Deployment

In order to support future research, data collection, user experience studies and live demon-
strations, a backend server, and iOS app have been developed and are outlined in the
following sections. This work is a collaborative effort involving many more individuals than
the author of this work.

14.1 Spiro AI Backend Server

The original SpiroSmart backend relied on Matlab and several outdated libraries which over
time, proved to be unreliable and non-ideal for a production quality experience. Recently
the server has been rebuilt with modern tools such as Docker as well as the models and
preprocessing pipeline outlined in Chapter 12, which are optimized for fast, parallel com-
putation, compared to Matlab. The new backend is complete with tests and reproducibility
metrics to encourage other developers are equipped to collaborate and contribute to the
codebase. All of the preprocessing and model execution can either be run on a CPU or GPU
and are fast enough to the point where the audio file upload time is the biggest bottleneck.
Furthermore, there are debug options to permit viewing the source audio files and output
spirometry report in test scenarios. Finally, it is fairly straightforward to deploy new models,
adjust the logic, or migrate to another server thanks to Docker and Git integration.

14.2 FreshAir iOS

To serve as a frontend to the server backend, an iOS app named FreshAir has been developed
and deployed to a number of global clinics. Aside from facilitating easy testing and exper-
imentation, the FreshAir app also allow usability studies to be conducted, as well as live
demonstrations. In fact, the original purpose of it was to explore different user experience
strategies to help educate and instruct users on performing an acceptable spirometry effort.
Through tight collaboration with the Spirometry 360 organization and the Seattle Children’s
Hospital, the app was deployed to several clinics in Europe and Asia and has been used for
other research and data collection for nearly a year.
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There have also been a number of high profile live demonstrations for various tech CEOs,
researchers and according to our Russian collaborator, even the Russian Prime Minister,
Dmitry Medvedev, has seen a demonstration. The FreshAir app has been a great vehicle for
visibility and also provides an avenue for people unfamiliar with health or machine learning
research to get excited about the mobile health revolution. Currently, the app supports all of
the models and outputs described in this work and is used as follows:

1. The user or clinician to enters patient information, or select an already existing one.
2. At this point, patient trends or historical data can be viewed if permission has been

granted.
3. The user is walked through how to perform the maneuver with several languages and

even a video.
4. Once the user is ready, they can begin the first trial by tapping the OK, Let’s take the

test! button.
5. Now, the phone streams the front-facing camera to act as a mirror so the user can

verify the distance and alignment matches the instructions, as well as visualize their
effort as they perform it.

6. When the user taps Start, a countdown begins and the user must inhale, then exhale
when the countdown terminates.

7. The app records the audio for 8 seconds, then automatically uploads it to the backend
server. The system proposed in 12.1 preprocesses the audio, checks the quality of the
exhale, then if accepted computes the spirometry report.

8. The result is sent back to the phone and the uploaded audio is saved for future
algorithm development (per IRB).

9. If the effort is rejected or the internet connection is not working, the user is prompted
with a descriptive error.

10. Otherwise, the Results screen shows the latest trial spirometry report with complete
with curves and percent predicted metrics.

11. To complete the session, the user must submit more trials until the reproducibility
criteria is met (see Section 5.4).

12. At any point, the user can inspect the volume versus time (VT) or flow versus volume
curve (FV) for the current and all previous trials in the session.

13. Once reproducibility is achieved, or the user prematurely taps Finish Session the Final
Results screen displays the level of reproducibility as well as the best effort, which is
stored as the result for that session. If the result is not reproducible, the user can go
back and continue doing more trials.

All of the IDs (see Chapter 11), including patient, session, clinic, and phone ID are handled
automatically by the backend and frontend in an organized manner so the clinician or user
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does not need to keep track of anything. The app screens, numbered based on the above
step they refer to, are shown in Figure 14.1.

Fig. 14.1: Screenshots taken from the FreshAir iOS app with the step number from the list above
annotated.

Future Updates

FreshAir is still in its infancy and is well poised for many updates. For example, a much
stronger quality control (QC) framework is being developed. Rather than simply accepting
and rejecting audio efforts, the future Confidence model will include capabilities for classi-
fying the spirometry error and offering feedback. The QC framework will also utilize the
front facing camera to get a sense for the phone to mouth distance and the diameter of the
user’s mouth during the effort. This will help educate the users on the correct maneuver and
perhaps allow the audio to be normalized based on the phone to mouth distance. Metrics
such as FET and errors such as early stop, which is difficult to obtain via audio, can be
measured using a vision based model as well.
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Another planned update is to move the Confidence and Prediction models to the device.
This will greatly speed up the turnaround side, and allow users to feel more comfortable
as they can opt out of sending audio to the server without losing the main functionality
of the app. This would be much more feasible if the Trimming and Confidence models
are condensed into a single neural network architecture such that both the Confidence
and Prediction models require only Mel-spectrograms as input features. There are several
successful examples demonstrating neural networks running very well on an iOS device, and
now Apple has launched Core-ML which makes the process even easier.

Conclusion
All in all, the app and accompanying backend allow for rapid end to end development, live
demonstrations, and user studies. Furthermore, the app gives the research great visibility
which inspires others the invest in future mobile health endeavors. Eventually, this app may
be accessible to those who actually need it for health reasons.
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15Conclusion

The main objective of this work has been to investigate the effectiveness of various machine
learning strategies in predicting spirometry metrics from the sound of a forced expiratory
effort. The investigation branched into three separate paths, each with the goal of estimating
spirometry metrics through a sound based model. First, physics and fluid dynamics based
models were derived with the hopes of explicitly modeling airflow. This method proved to
be limited as there are several unknowns and uncontrollable variables at play. It was then
postulated that the unknowns could be effectively understood through data-driven modeling
techniques. The second approach comprised of computing manual features from the audio
and using classical machine learning to tune a mapping from the extracted features to the
desired outcome. This approach naively assumes the manual extracted features are adequate
for the problem at hand. Up to this point, the approaches were based on prior research in
mobile spirometry and airflow modeling. The third approach explored cutting-edge deep
learning techniques to devise a neural network which automatically extracts features from
the exhale sound that are ideal for modeling the intended output.

The latter two machine learning approaches proved to be useful in two of the subproblems
defined in the end to end Spiro AI system, namely the Prediction model and Confidence
model. The Prediction model, being the most complex subsystem, benefited most from the
deep learning architecture, specifically the CurveNet model which was devised specifically
for outputting a flow versus time curve from which all relevant spirometry metrics can be
derived. In contrast, the Confidence model, which was designed to reject incorrect efforts
based sound, performed best using the expert defined manual features. Finally, the Trimming
model which simply extracts the region of sound where the exhale occurs performed best
using an explicitly defined Rule-based method, although this subproblem was not thoroughly
evaluated. Anticlimactically, the deep learning approaches, while a million times more
complex were certainly not a million times more effective. This suggests there are inherent
limitations set in place by the dataset, problem complexity and signal to noise ratio.

A significant contribution outside of the model evaluations and the end to end system lies
in the cleansing and organization of the massive global dataset. Through this process, the
collection and organization procedures were found to be less than ideal. As a result, the
quality of the data was sacrificed along with over half of the 40k entries. Following the
organization, the statistics of the set were analyzed and a large bias towards unhealthy
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abnormal lung function was revealed. The dataset, despite its flaws and limitations, was
still incredibly valuable as it allowed various machine learning techniques to be evaluated
and compared. While the resulting models are not ready for the real world until a more
thoughtful and balanced data collection effort is completed, the main conclusions and
proposed system will no doubt have a lasting effect on future work.

Aside from the models that serve as the main components in the complete Spiro AI system,
generic machine learning pipelines and experimental procedures for tasks such as ultrasonic
sensing were documented and open sourced for use in other problem areas. Furthermore, a
backend server and iOS app were developed and deployed for use in future data collection
efforts and demonstrations.

In summary, this work proposed a deployable end to end solution which is trained and
evaluated on the largest known spirometry dataset and is the first to effectively use deep
learning to model the relationship between sound and human-powered airflow. While the
results suggest the problem is far from being solved with respect to what regulatory agencies
such as the FDA define as acceptable, spirometry is now closer to a smartphone based
solution than ever before. The next section will outline the work necessary for advancing
this research closer to a solution that has the potential to end up in over 2 billion people’s
pockets.

15.1 Future Work

Much of the future work has been alluded to throughout the chapters and can be categorized
into future studies and data collection efforts as well as future technical developments.

Data Collection
• A highly regulated and organized global data collection effort focused on collecting

smartphone-based sound recordings and spirometry ground truth from a balanced
distribution with respect to health, age, ethnicity, and gender. This can be used to
improve and validate the Sprio AI models on a more realistic distribution.

• A well defined longitudinal study on a handful of individuals with existing lung
conditions such as COPD or asthma to evaluate the effectiveness of trend reporting
and treatment monitoring.

• A qualitative longitudinal study on volunteer smokers that may be trying to quit and
are willing to try smartphone based spirometry as a motivational feedback system for
assessing lung function.

• Evaluation using the FDA appointed ATS waveform generator which is an airflow
generator used to validate clinical spirometers.
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Technical Advancements
• A more complete confidence model with built-in trimming capabilities and automatic

spirometry error classification based on the sound of the effort.
• Deeper exploration into neural network architectures, particularly CRNNs.
• Further exploration into more advanced airflow physics models using software simula-

tions and complex fluid models.
• Implementation of the Spiro AI system on a smartphone rather than in the cloud

in order to preserve user’s privacy and enable usage in regions lacking high-speed
internet.

The work completed so far, as well as the proposed future work is clearly multidisciplinary and
will require collaboration between physicians, physicists, engineers, regulatory committees,
computer scientists, and volunteer patients to name a few. It is the collaborative quality that
makes this type of work inspiring and impactful for many, yet treacherous and daunting for
others.
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